¥
b
:

Translation Report T-A2049-26

|| g

NASA
AEROSTATIC [EXTERNALLY-pRessurizen 1 CR 71054
GAS LUBRICATED] THRUST BEARINGS

§ —_N&éf%_gréz . (THRU)
z ”~
by £ //39%;Z //
E /?GES) / l?DE)
. L3 77
Erwin Loch ¢ /£ ///2?:7; ]
* (NASA CR OR TMX OR AD NUMBER) {(CATEGORY)

Translated from a doctoral thesis submitted
to the Technical University of Graz, Austria

GPO PRY &

Prepared under CESTI PRI G $
Contract Nonr-2342(00) WY,
Task NR 062-316 Hard copy {HC) gé —

Microfiche (MF)

# 653 July 65
Supported jointly by
DEPARTMENT OF DEFENSE

ATOMIC ENERGY COMMISSION
(\fﬁTIONAL AERONAUTICS AND SPACE ADMINISTRATION

et v 2 et e e e e e 4

Administered by
OFFICE OF NAVAL RESEARCH
Department of the Navy

RANTKILIY INSTITUTE RESEARGCE LABORATORIES

BENJAMIN FRANKLIN PARKWAY AT"‘2OTH STREET, PHILA. 3, PA.



Translation Report

AEROSTATIC [EXTERNALLY-PRESSURIZED
GAS LUBRICATED] THRUST BEARINGS.

By

Erwin Loch

Translated from a doctoral thesis submitted
to the Technical University of Graz, Austria.

Prepared under
Contract Nonr-2342(00)
Task NR 062-316

December 1965

Supported jointly by
DEPARTMENT OF DEFENSE
ATOMIC ENERGY COMMISSION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Administered by
OFFICE OF NAVAL RESEARCH
Department of the Navy

Repraduction in whole or in part is permitted for
any purpose of the U,S. Government

T-A2049-26



AEROSTATIC [EXTERNALLY-PRESSURIZED
GAS LUBRICATED ] THRUST BEARINGS.

(Calculation and Experiments).

AEROSTATISCHE AXTALLAGER

(Berechnung und Versuche)

From the Faculty of Mechanical Engineering and Electrical Engineering
of the
Technical University of Graz, Austria

As a requirement for graduation to Doctor of Engineering

Thesis submitted by
Erwin Loch

A native of Imnsbruck, Tirol (Austria)

Reviewer: Professor H. Winter
Co-Reviewer: Professor A, Steller

Summer 1962



The present research work was performed at the firm
Escher Wyss, A, G., in their Research Laboratories
at Zurich, Switzerland, This report is part of the
development program for aerodynamic* and aerostatic*
gas bearings,

The writer would like to thank especially Dr. C. Keller,
Director of the Escher Wyss Research Division, and his
assistant, Dr. W, Spillmann, who graciously approved the
publication of this paper.

Zurich, Summer, 1962, Erwin Loch

* FEditor's Note

The terms "aerodynamic' and "aerostatic' are used throughout
this thesis. 1In the United States however, the generally
accepted and preferred designations for these types of gas-
lubricated bearings are 'self-acting" and "externally-
pressurized" respectively., This recommendation was made in
about 1958 by a Technical Coordination Committee formed to
review the research work in the field, sponsored by the
Office of Naval Research in conjunction with many other
agencies of the United States government,

—i-



Preface

This ruport is a translation of the doctoral thesis by Erwin
Loch, on the subject "Externally-Pressurized, Gas-Lubricated Thrust
Bearings'", that was submitted to the Technische Hochschule, Graz,
Austria in 1962,

It deals with the static and dynamic characteristics of single-
and double-acting thrust bearings of many geometrical forms in such a
thorough manner that it seemed very desirable to translate this
important work into the English language to enhance its usefulness.
The extensive theoretical analysis of these bearings included in the
thesis is matched by the abundant experimental data taken from a
series of tests performed in the research laboratories of Escher
Wyss at Zurich, Switzerland.

We wish to exprass our thanks to Dr. Erwin Loch for authorizing
this translation and for his kind assistance in bringing it to com-
pletion, and to Mr, Stanley Doroff, Fluid Dynamics Branch, Code 438,
O.N.R., Washington for providing the necessary support.

The translation was done by Dr. Hans Figdor of the Franklin

Institute's Science Information Service. Technical editing was
done by Prof, Dudley D, Fuller, Typing by Mrs. Anna H. Karle,

W. W, Shugarts, Jr., Manager
Friction & Lubrication Laboratory
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Principally used designations

A

b

Re

2

3

t
s

}J

caloric working equivalent
width of the compensation channel
smallest nozzle diameter

effective cross section surface of the inlet nozzles

bearing surface
acceleration of gravity

flow of bearing gas

height of the bearing slit

head by the compressor of bearing gas
number of the inlet nozzles

absolute axial force

output

absolute pressure

radius of the bearing

gas constant

depth of the compensating channel
time

temperature

local velocity

radial velocity averaged over h
Reynolds number

specific gravity

dynamic viscosity

adiabatic exponent

heat conductivity of the gas

J.q coefficient of friction

S ? angular velocity

sec
° K
m/sec

m/sec

kg/m>

kpsec/m2

kcal/msec ° C

1/sec




Indices

IT

flow outwards in the direction + r

flow inwards in the direction -r

condition prior to exposure to the throttling elements
inlet to the bearing slit

outlet from the bearing slit

carrying or loaded side of the bearing

non-carrying or unloaded side of the bearing
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Short synopsis of the most important literature .

Shires studies in a report (IX) the flow of air through long, narrow
clearances with rectangular cross sections. Both laminar and turbulent
flows were discussed. The results for different shapes of clearances
showed a satisfactory agreement between theory and experiments as far
as pressure profile, flow and temperature are concerned.

Basic parameters in the comparison were the friction coefficient uL
and the Reynold number; the results were also compared with the

laws found by Blasius for incompressible liquids. Shires concluded
that, in laminar flow, the resistance coefficients VL; are in good
agreement with the incompressible flow whereas, in turbulent flow,
the A - - values given by Blasius are, in general, not applicable.

The paper by Deuker and Wojtech (VII) describes the radial flow of
compressible liquids between closely adjacent parallel circular discs.
The kinetic energy term in the equation of flow was included in

the investigations. By several successive transformations of the
variable magnitudes, the equations are converted into an expression
which can be graphically integrated. From the plurality of calcu-
lated velocity curves, a solution for the pressure profile in the
bearing is determined. This paper includes both compressible and
non-compressible cases. The author states that, in compressible

flow, the change of state of the gas can be assumed as P 9”‘=constant,
the polytropic exponent m changing with the radius. A simplification
of the equations was achieved in the following way: For the flow in
the immediate vicinity of the inlet nozzle, i.e., with small radii,

an isentropic change of state of the gas in the clearance was assumed;
in the other areas of ths bearing, an isothermal change. The investi-
gation referred to various conditions at the inlet for Mach numbers
between O and 1.

Comolet (VIII) compiles, in the form of a small textbook, the two-
dimensional flows of viscous liquids and gases for the longitudinal
and radial flow between two fixed parallel plates. It is based on
a polytropic change of state of the gas. The investigations are
widely applicable, since also inertia forces, the effects of which
are sometimes considerable, have been considered. The equations
obtained allow the derivation of known results for the most simple
cases. The experiments performed confirm the theoretical assumptions
and define the range of applications of the suggested equations. For
the radial-divergent clearance (flow from a source in the center of
two parallel circular discs), the flow is laminar and isothermal
whenever the Renumber at this location is smaller than 1100. This
critical Renumber for the sudden change from laminar to turbulent
flow is approximately one half the number found for the parallel
clearance. Comolet traces this back to the fact that the divergent
flow in the immediate vicinity of the gas feed, i.e., with small
radii, has instability factors which do not occur in the parallel
and convergent flow. In the case of thrust bearings where the flow
is radially outward from a central chamber, Licht and Fuller (IV)
derived the equations of laminar clearance flow for the pressure
profile, the height of the clearance, the load capacity and the




flow, In doing this, they assumed that the change of state

of the gas was isothermal. In the general energy equation, however,
the increase of kinetic energy of the radial velocity and the influ-
ence of rotation were not taken into consideration. A comparison
between the theoretical results and the measured values showed a
good agreement within the range of the experiments.

Laub (X) discusses in his paper the mathematical interrelationships
for similar bearings as (IV) and under the same conditions. Of great
interest, in this connection, are the measuring technique used and
the experimental setup. This paper includes a synopsis of the most
important contributions in the field of aerostatic bearings.

Pigott and Macks (V) conducted experiments in a non-rotating thrust
bearing which was fed by compressed air at temperatures up to 540° C.
Simplified expressions were used in the description of the flow
through the capillary nozzles used and the bearing clearance. The
results were shown in the form of curves and compared to the experi-
mental values in a wide range of temperatures and load capacities.

In this connection, they confirmed the fact that the load capacity
of gas bearings is increased with increasing temperature of the gas
on account of the increased dynamic viscosity. In the range of very
high temperatures, however, the theoretical and experimental values
for the height of the clearance and throughput were no longer in
agreement on account of distortion of the disc of the bearing.
Besides, there is a short report on the occurrence of instabilities
in the bearing, i.e., self-excited oscillations, in one of the exper-
iments.

The authors Hughes and Osterle (VI) made a theoretical investigation
of the influence of rotation in a revolving bearing disc on the load
capacity of a static thrust bearing with laminar flow outward. This
investigation had the following result: when the lubricant is a
viscous liquid, the load capacity of the bearing changes considerably
with increasing angular velocity; if, however, a gas flows through the
bearing clearance, the influence of rotation on the load capacity is
very small.

In another paper (XVI), Hughes and Osterle first defined the range of
applicability for adiabatic and isothermal operating conditions with
radial clearance flow, and then investigated the intermediary range

with consideration of the heat transfer between gas and bearing discs.
Based on a simplified model, it was found that the flow in the bearing
clearance is in most cases, especially at high temperatures, predominantly
isothermal. Besides, equations for the calculation of the radial tempera-
ture distribution were derived and the results of actual experiments were
compared with the isothermal and adiabatic flow.

The report by Licht, Fuller and Sternlicht (XVII) discusses the problem
of the pneumatic instability of an aerostatic thrust bearing. The
appearance of self-excited vibrations is traced back to the compensation
spaces which are in most tases arranged in the fixed bearing disc. By
means of a method which corrects nonlinear distortions, the problem is
opened to an analytical study. Confirmed by the experimental results,
the authors could show in a thrust bearing with a central compensating
space that the greatest stability of self-excited vibrations (air-hammer)
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is reached with the lowest depths of the compensation space, the
narrowest bearing clearances and the highest input pressures.
Further considerations and experiments showed the advantage of
nozzles with large cross sections and short boreholes (orifices)
compared to nozzles with small cross section surfaces and long
boreholes (capillaries).

Similar conditions and equations for the description of self-excited
vibrations in aerostatic thrust bearings are the basis of the paper
by Roudebush (XVIII). By means of a digital computer, highly system-
atical investigations on the influence of the various parameters
(height of the clearance, pressure, compensating space, vibrating
mass) on the stability of the bearing are performed. For some actual
examples, the amplitudes of vibration are determined and represented
as a function of time. The author emphasizes that the volume of the
compensating space as well as the rigidity of the bearing are respon-
sible for the pneumatic instabilities.

In the reference (XIX), the phenomenon of self-excited vibrations in
aerostatic bearings is interpreted by means of a vectorial representa-
tion. Richardson makes a distinction between a static and a dynamic
rigidity of the bearing. The result of his studies is that the relation
between dynamic force and deflection of the bearing behaves like a static
spring constant with a leading and trailing effect. While the restoring
and deflecting force, respectively, of the sinusoidal motion of the bearing
mass is trailing with the time, it is preceded by a negative damping force.
The stability criterion was obtained from the condition of a positive damp-
ing. In order to illustrate the application of the derived equations, a
comparison was made between two customary aerostatic bearings with compen-
sating channel and nozzles opening directly into the clearance, respectively.

I would like to mention the papers (XX), (XX1) and (XXII) by the authors
Licht and Elrod, without commenting on them; they relate, likewise, to
the problem of self-excited vibrations in aerostatic bearings.

Gottwald and Vieweg (XXIII) made calculations and model experiments

in static hydraulic and air bearings. In a conical bearing with annular
clearance inlet and in a thrust bearing consisting of two circular discs
with central inlet borehole, the mathematical interrelationships between

the course of the pressure in the clearance, the flow volume, the

load capacity and the moment of friction were determined partly analytically
and partly graphically. The influence of the size of the nozzle borehole

diameters on the stability of the bearing was especially emphasized in one
chapter.

Review of the items covered in this study.

Based on the energy phenomena, an equation of general applicability for
small disc clearances, for radial equilibrium of the compressible
clearance flow with consideration of rotation is derived.

Furthermore, it will be shown that the heat transfer of a flowing gas
between two discs in close vicinity to each other is very good and that,
under certain conditions, the clearance flow is subject to an isothermal
change of state.




o

A1l calculations and investigations have been extended to bearings
through which the flow is in two directions, i.e., outward and inward.
For the laminar, isothermal radial flow, the pressure distribution in
the bearing clearance and the throughput volume are derived by means
of a simple approximation (w, dw = O, fL = 0) and an extended approx-
imation (w.dw. # O, L+ 0).

A discussion of the flow equations obtained shows the influence of
kinetic energy, of rotation of a disc, of gas-dynamic effects and

of labyrinth positions., This study is followed by a synopsis of the
observations on the conditions at the sudden transition from laminar
to turbulent flow, which have been made by various authors.

Based on the friction values for the turbulent clearance flow given
in the literature, the course of the pressures and throughput volumes
are calculated for the turbulent iscthermal radial flow in a simple
case (w.dw= 0O, L= 0)

Although the solution of the load capacity integral for the simple
approximation of the laminar isothermal radial flow in narrow clearances
for the positive r - direction had already been known, the result could
be evaluated in such a way that the carrying capacity of any bearing
whatsoever can be determined without calculations, by the introduction
of a dimensionless factor Cy, which depends only on the respective
radii and pressure ratio. The solution of the load capacity integral
of the laminar flow for the negative r - direction, which is, likewise,
characterized by a dimensionless factor, Cki, as well as the integral
solution for the turbulent isothermal radial flow are added as novel
items.

‘Another chapter deals with the optimization and economical calculations

of the bearings. Various criteria lead tc the establishment of the

optimum bearing geometry as far as the site of the gas inlet is concerned.

The minimization of the total power input for an aerostatic bearing yields
optimum values for the compensating space and the height of the clearance.

A comparison of the power losses illustrates the applicability of different
gases. For double~acting and symmetrically designed thrust bearings, an optimum
nozzle pressure ratio is defined and calculated by means of minimization of

the compressor output (bearing gas production).

The description of the individual throttle elements includes the properties
and basic calculations for cylindrical nozzles and apertures, capillary
nozzles, venturi nozzles and throttles with pressure-dependent, variable
cross sections. With the aid of theoretical studies and the results of
measurements, the advantages of venturi nozzles over regular cylindrical
nozzles will be shown (cf. also German Patent 1,070,452). Whereas the
present paper gives only a reference to the gas feed through surfaces of
porous material directly into the bearing clearance, the calculation and
design of such bearings is the subject of another paper.

Another chapter is devoted to the non-radial isothermal clearance flow.

If the influence of inertia of the gas and the disc rotation is disregarded,
the flow distribution can be represented as a potentlial function where the
correlation between ¢J qf and p, w deviates from that of the incompressible
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flow. General relations between the pressure profile, the load
capacity and the throughput volume are given. With the aid of a
bearing with several individual nozzles which open directly into
the bearing clearance, the influence of the number of nozzles on
the carrying capacity and throughput volume is determined and com-
pared to the respective measuring results.

From the equilibrium condition for the amount of gas which flows

into the bearing through the inlet nozzles and escapes again through

the clearance, dimensionless bearing characteristics are derived and

are represented in the form of curves, as functions of gas and pressure
parameters for laminar and turbulent clearance flow. The characteristics
are applicable to feed systems with short cylindrical nozzles or apertures
and any arrangements whatsoever of bearings and flows.

Several experimental results of heating of the bearing, bearing character-
istics, pressure profile in the clearance, volume of throughput and

load capacity in specially designed bearing testing equipment confirm the
correctness of the theoretical derivations. Besides, a simple method 1is
described for determination of axle shift actually occurring in a machine.

The derivation of the amplitude equation was taken from the literature
on self-excited vibrations in aerostatic bearings and was applied to
bearings with ring-shaped supporting surface. With the aid of some
comparisons and measurements, the influences of feeding nozzles, the
compensation volume and other parameters on the bearing stability are
pointed out. All previous developments and theoretical efforts con-
cerning the design of stable aerostatic bearings relative to self-
excited vibrations tend to dimension the compensating spaces in the
bearing in such a way that the vibration described above does not occur.
Conversely, in the present paper, methods for damping the vibrations are
suggested. The knowledge of the oscillating frequency of the bearing
system allows the design of damping elements which can be installed in
the bearing discs in the form of Helmholtz resonators. Finally, axial
vibrations can appear without the presence of compensating spaces.

The possibilities of removing these instabilities are discussed.

Design and mode of operation of aerostatic thrust bearings.

The bearings described in this report consist of at least two parallel
discs which are separated from each other by the bearing clearance;

one of them is fixed on the rotating machine shaft, the other in the
casing either rigid or self-adjusting. The passage of the machine
shaft through the fixed disc requires an annular supporting surface.

In order to keep the bearing clearance permissible for safe operation
as small as possible (low gas consumption), the bearing discs should
be plane,parallel to each other and should have finely ground surfaces.

The bearing gas is under increased pressure pp and is taken from a
source located outside the bearing; it can be admitted to the bearing
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clearance in different ways. Upon entering into the clearance, the
gas stream is divided in such a way that one part flows outward, the
other towards the inside in the direction of the shaft center.

In order to attain a load capacity as high as possible in the bearing,
it is desirable to utilize the highest pressure pR of the bearing gas
which may be stored, e.g., in a container. 1In a bearing designed
according to this requirement, the gas feeding duct should enter the
bearing clearance with its whole cross section either directly or
across an annular compensating channel. If the volume of the gas
container is large enough to keep the pressure in the reservoir PB
constant even at a high rate of withdrawal, (large bearing clearance)
and if the pressure loss in the feeding duct is disregarded, the
pressure distribution and the average loadability T, i. e., the
carrying capacity of the bearing, is independent of the height of

the clearance h. Such a bearing can be designed for one single load
capacity only. Since any height of clearance can appear at the given
axial force, the bearing is in an indifferent equilibrium. The through-
put volume which is proportional to h”’ would assume undesirably high
values at great heights of the clearance. Thus the bearing does not
have either a defined or a limited gas consumption.

If the bearing just described is fed directly from the compressor

(for example, a multiple-stage piston compressor) without an inter-
polated gas reservoir and this compressor aspirates permanently the
same amount of gas from the surroundings and pumps it into the bearing,
a definite pressure pg adjusts itself corresponding to the height of
the clearance and depending on h. Since, for example, the flow

volume is -

G ~ (pg” - p22) n’

for laminar isothermai clearance flow (equations 7.19 and 7.20), the
average load capacity for G = constant is, therefore

—
P ~ Pg ,:,\ p, + const .
! h3

Thus the load capacity of the bearing decreases with increasing height

of the clearance. Although such a bearing has a fixed equilibrium
position, it has a definite and limited gas consumption. The bearing
system described here can, however, only be used where no changes of

load, or very slow ones, are to be expected. If there occurred suddenly
an appreciable additional load, the bearing clearance would drop to zero
on account of the compressibility of the medium in the feeding system,

and only after a certain period of time, when the compressor has produced
a higher pressure p'y in the duct system, a clearance corresponding to the
new load is formed. For reasons of design, the duct volume between com-
pressor and site of inlet to the bearing cannot be brought to the desirable
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minimum value. Another disadvantage of this system appears when the
bearing discs are in oblique position to each other. If the bearing
is fed by only one single compressor, a major part of the gas would
escape on the side of the wide bearing clearance and the pressure in
the duct system would be reduced considerably. The conditions are
considerably better in bearings which are in principle similar, but
for incompressible liquids. The so-called supporting source bearings
in large machine tools (vertical boring mills) have proven very satis-
factory and result in a higher efficiency and better level course than
hydrodynamic pivot bearings. They are designed in such a way that
individual pockets which are separated from each other are arranged

in the fixed bearing disc. The lubricant is fed under pressure into
each pocket by a separate feeding system (including an oil pump).
Since the pumps are adjusted in a way that they supply the same

amount irrespective of the pressure, an oblique position of the
faceplate, for instance by unilateral loading, is avoided. Likewise,
the height of the bearing clearance remains automatically the same
with all loads and r.p.m.

In aerostatic bearings, the supporting gas is led into the clearance
across throttling elements. The throttle elements which remove the
disadvantages described above may consist of individual nozzles which
open directly into the bearing clearance or into a compensating space

or are designed as continuous annular clearance. The throttles limit

the volume of throughput at great heights of the clearance and thus
achieve a maximum pressure pj and average pregsure D dependent on the
bearing clearance. The volume of throughput G increases first with
increasing bearing clearance and reaches a constant value at the critical
flow out of the throttles. The limitation of quantity induces, however,
also a reduction of pressure; thus the highest available feeding pressure
pp will never be applied, but always only a lower pressure pj.
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Study of the energy.

The gas is admitted into the bearing clearance under the pressure P1-
Besides, a torsional moment My, which is generally designated as
bearing friction moment, is introduced. This torsional moment gives
the bearing gas a circumferential speed vg (z), i.e., an angular
force and overcomes in addition the tangential shearing stress
components. The actual course of vg (z) will,

therefore, be adjusted in such a way that the

bearing friction moment is greater than the

counter-moment on the fixed bearing disc.

23

(Mg > My). In order to facilitate the

analytical studies, a linear course,

however, of vg across the bearing h

clearance h will be assumed. //////;7
V

iLﬂ

p=raf
(5.1)
This is, of course, only an approximation, since 85—*” e

linear is small according to reference %), p. 404
and to (II) at very narrow disc distances. A greater
deviation from this approximation occurs only at:

LY

in this case My = My; this means that no momentum zézazjb/
is left over for producing Ve or the torsional

flow, respectively. The error which occurs When

it is assumed that the distribution of v é é

- ha pnae
Ren = -3 7gRT — ° (5.1a) L

Generally, however, Rey is less than 3 in the
practical design of gas bearings. The height

of the clearance in the bearing should be as

small as possible on account of the gas con-
sumption. The lower limit of h .y for safe
operation must be selected more 1in considera-

tion of oblique position of the discs by errors

in assembly and by deformation rather than of the
roughness of the discs. Clearances of a width
between 15 and 30 x 10'6m having proven satisfactory,
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A centrifugal force which performs work when the flow is in radial
direction acts upon the displaced gas particles between the rotating
and the fixed disc. The exact connection between acceleration, the
pressure and viscosity forces in radial direction can be derived from
the Navier - Stokes equation for laminar flow, From

<
1]

r=v, (r,2)

V? vo (r,z) and
VZ=O

the following can be concluded:

Ve _ Ve __aep (2w _avr v A7
Vear r S or Var‘*rar‘ TtgEr| . -2

If one turns from this equation which applied to the annular element
2r Xdr.dz to average values of the width of the clearance (annular element
2r3t.h.dr), this is transformed, if the following applies:

h
= -:1- dZ (5'28')
Wi h.er

into

(g [ afer - i e o

Y - —-Ciaa
Reibungsarbeit der Wand-
schubspannunﬂen in radi-
aler Richtung

Arbeit der Druckkrifte (5.3)

| +{ }  Arbeit der Fliehkrifte
Beschleunigungsarbeit in radialer
Richtung (=Zuwachs an kinetischer
Encrgie

(Reibungsarbeit.....): friction effect of the shearing stresses in the wall in

radial direction.
(Arbeit der Druck...): effect of the pressure forces
(Arbeit der Flieh...): effect of the centrifugal forces
(Beschleuingungsaiveit...): effect of acceleration in radial direction
( = increase in kinetic energy).
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In this connection, centrifugal force energy means that work is
performed by a torsional moment My and that rotation of the gas
is induced thereby. The centrifugal forces acting upon the gas
particles thus work in radial direction. The equation No. 5.3
can, therefore, be written in the following way:

wdw _ dp. -0 .
g db -+ ¥ + daa 0] (5.4)

It is shown by equation No. 5.1 that the energy required for
acceleration in circumferential direction is assumed to be so
small that it can be disregarded. Equation No. 5.4 represents
thus the energy equation of the flow in general form. It can,
therefore, be used for the calculation on bearings with laminar
as well as with turbulent flow if the respective members are
introduced.

Radial temperature profile,

In order to obtain a general idea about the change of state

of the gas during the flow through the clearance, an estimation

with the aid of the laminar flow with heat exchange on the surfaces
of the discs is attempted. According to the first principal theorem
of thermodynamics, the following applies:

CedT = dQzur + 9z, + Adaa + A %E . (6.1)

where c_ is the specific heat of the gases in kcal/kg °C; A is

the calbric energy equivalent in Kcal/m kp: T means the average
temperature across the width of the clearance in degrees K;

dgz,1 1s the heat introduced or removed by heat conduction

relative to the unit of the weight of the throughput, in kcal/kg;
dq,;» 1s the heat of friction produced by the tangential shearing -
stresses, in kcal/kg; A.dap is the heat generated by radial shearing
stresses on the walls, in kcal/kg; p means the static pressue of
the gas in the clearance, in kp/mé; 9" 1s the specific gravity of
the gas, in kg/m3. v

For the further studies in this connection, a simplification can
be made by disregarding the first two members of the equation No. 5.4,
since they are negligible in comparison to the two other members.
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——V’gdw - db L %B + dag - (6.1a)

An estimation showing in which cases this approximation is valid
will be given in Chapter 8.1. Thus, if

£LB_ +v(iGR = 0
§ (6.2)

is introduced into equation No. 6.1, the first principal theorem
is reduced to:

cpdl = dg,, + dg,, - (6.3)

The amount of heat transmitted by a bearing disc per annular
surface element 2 r JU .dr to the gas or, conversely, from the
gas to the disc by heat conduction, relative to the unit of
the amount of gas flowing in radial direction is

d Qa4 _2rw df‘O((Tw—T)
G G : (6.4)

If it is assumed that both discs which determine the clearance
have the same wall temperature T, the following results:

2rrdr & (T -T
dqzm = 2 G ) . (6.5)

According to reference (III), for laminar flow in a plane, parallel
clearance with cogstant wall temperature, the heat transference
number Ok (Kcal/m~ °C sec) is

X .
Ne =B =375 (6.6)

where h is the height of the clearance (in m) and X the heat
conductivity of the gas (in kcal/m °C sec). If this value of

& is used for the further calculations, it must be mentioned
that this is only an approximation, since in our case a flow
with change of the radial cross section is involved. Besides,

a jy component is superimposed to the radial flow; the influence
of 4this component on the value of @\ cannot be estimated here.
Consequently, the following applies:




dq,,

‘_ dQIUz
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dgy, =% 4.31 T ==

)

The sign "+" means: flow towards outside; the sign "-" means:
flow towards inside.

In the equation No. 6.7, T, is the wall temperature of the discs
(in °K) and & is the throughput per second (kg/sec).

The second heat introduced, which is generated by the rotation

of a disc, is found directly from the torsional moment. By the
assumption of a linear vg distribution over the height of the

clearance, it was already anticipated that the whole energy of

the torsional moment is transformed into

heat and that the energy which is required

for the torsional flow Vg is small and §$
can be disregarded. The’torsional moment N
for an annular element 2 r N .dr is b&_ c\\_
Tz < Lyee-g
C Z
. =0
PPy

dM = 2rT drr Ty = 27r-dry[ & o5

(6.7a)

By introduction of the equation No. 5.1 into this formula, the
following is obtained:

. ro |
dM = 2rridryp |- . (6.7b)

The heat supplied relative to the throughput per second is:

_AdMQA _ 2wrtdrprQ*A 421 Ap PP0%dr

G G hG - hG " (6.8)
If the members No. 6.7 and No. 6.8 are introduced into the first
principal theorem No. 6.3, the result is:

2 3
Co dT = [+ AMTw=T)r 4 Ap Q*r

P ST = T “he ——1dr . (6.9
where "+" applies for the flow outwards (with'inéreasiﬁg dr, T
increases on input of heat); and "-" applies for the flow inwards

(with decreasing dr, T increases on input of heat).
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If we assume that there is a very good heat conduction in the bearing
discs and that the wall temperature adjusts itself as constant over T,
and if we use the following abbreviations:

_ o+ A5 T A

™ ~ h Cp G

N . ZTT'AP ol (6.9a)
= = hceG

+: for flow outwards. -: for flow inwards,

the equation No. 6.9 is transformed into:

% + MrT = Nr*+ MTur . (6.10)

The general solution can be deduced from the homogeneous equation

iq-MY‘T‘O

ar - ne (6.11)
T =Cne *
by variation of the constants C(r):
dT v _~ME -MI?
4 —Cme * —Mrcne * . (612

If No. 6.11 and No. 6.12 are introduced into the equation No. 6.10,
the result is: :
kS

me
dr + Nfr'e Tdr +C, - 7

]

C(T‘) = MTw jrem

After integration, the following is obtained:
r’L

N M%x ] Mz
C(r) Ma.'e [MY‘ - ] + TW'e + C4 / (6.12b)
Thus, the desired solution by introduction of C(r) into equation
No. 6.11 is:

r_l

By introduction of the boundary conditions, r = r as T = Tqas
and r = r13, T = Tq;, the course of the tempera%ure for the
outward flow is:

= - - _n(rt_ Na ) N L L - L ia) 6.1
T= T =TTl e =050 S [r2) -2 € 5° J( !
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and for the inward flow:

Ml

T= Tu=(-T) e ¥05-) L N e ) r2) e%‘t'mj 6:15)

The derivation of the analogous equations for the turbulent
clearance flow will not be given here, because this would not
involve an essential contribution to the principal studies made
in this paper.

The course of temperature in a bearing was calculated according
to equations No. 6.14 and 6.15 for the adopted conditions. It
is illustrated in Diagram 1. The case given here could, for
example, occur in a machine in which the gas is heated by the
shaft and the casing, and cooled by the bearing gas. It can

be seen that the heat exchange between the bearing discs and
the gas is very intensive. After the gas has flowed the very
short distance A r, the gas has reached the temperature of

the wall and would remain constant up to the end of the clear-
ance for f)l= 0. The rotation causes heating of the gas which
remains, however, very low on account of the reflux of the heat
into the discs.

The basic assumption that the wall temperature remains constant

may not be quite correct in all cases, since the discs are cooled

or heated in the immediate vicinity of the gas inlet, depending

on the temperature of the gas, are subject to heat supply by
revolution along the entire bearing surface and thus radial
temperature gradients occur within the bearing discs. But it

can be seen from this estimation that the temperatures of the

gas and of the wall are always almost the same for the clearance
flow on account of the good heat exchange in the narrow clearance.
To what value this wall temperature, remaining almost constant

over r, adjusts itself, does not only depend on the temperature

of the gas at the inlet into the bearing and the number of rotations
per minute, but also on exterior conditions (such as introduction and
removal of heat by the components of the bearing).

Diagram 1. (left) assumed (right) calculated

(last line, 2nd col) ty = constant over r.
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On account of the intensive heat exchange between gas and discs,
any hypothesis based on an adiabatic change of state of the gas
during the clearance flow in bearing materials found in practice,
i.e., of good heat conduction, can be eliminated. The further
studies of the clearance flow rely, therefore, on an isothermal
change of state of the gas.

Laminar, isothermal clearance flow.

It can be concluded from the explanations given in the preceding
Chapter that the temperature of the gas in the bearing clearance
depends, to a great extent, on the temperature of the bearing
discs. Assuming an isothermal clearance flow, the temperature
of the gas at the inlet into the bearing must not be used as

a base for the calculation, but it must be governed by the wall
temperature of the discs which is the resultant from the thermal
equilibrium (heating by rotation, heat supply or removal by the
shaft, outside cooling of the bearing discs, heat transport of
the bearing gas, etc.) and remains constant.

In the following, equations for the calculation of the course

of pressure and the throughput volume are derived for radial
flow through narrow clearances. Since the derivations are based
on different assumptions in each case, the range of validity of
the equations obtained is limited.

Simple approximation - Slow flow.

Starting from the Navier - Stokes equation (No. 5.2), it is
first assumed that the energies of the acceleration and centrifugal
forces are small in comparison with the energies of the radial
shearing stresses and pressure forces. An estimation on the
permissibility of this approximation will be given in Chapter 8.1.

Thus equation No. 5.2 is reduced to the following:

2V AV Vi *Vr 1 _
—B—P—-r?[ z F — rJ—O' (7.1)

2r or ' TFar rr T 3zt

If the z-components are disregarded, the continuity equation for
the case of incompressibility is

12=(rve)=0 (7.1a)



or .
oVr
F(ve + rar) =0 -
(7.1b)
We obtain by differentiation:
2'Vr 2Vr Vi
arr T far — 5z = 0 . (7.2)

If equation No. 7.2 is introduced into the second member of equation
No. 7.1, only the following remains:

2V 4 dp
‘3_2_: - 9 dr (7.3)

The solution of this differential equation gives, with consideration
of the boundary conditions

z2=0, v_=0 and 2z =h, v_=20:
i 1 dp v
Vr = — ::L_l?—' EFZ(h "Z) / (7.4)

which is a parabolic distribution of the radial velocity in the
clearance. The average value can be determined from:

. " dp
w=ﬂ-JVrdZ R (7.5)

Another way of writing this equation

dP i.ﬂzqwdr -0

h* (7.6)
or, with consideration of equation No. 6.2
.4 12n wdr

dOa = - h:.xu (7-7)

represents the decrease in pressure or the work on account of the
radial viscous flow, respectively, where "+" applies to the outward
flow and "-" to the inward flow. It is worth mentioning that the
approximation equation No. 7.6 is analogous in form to the equation
for the pressure drop in a channel of invariable width. The varia-
bility of w with r takes the widening and constriction, respectively,
of the clearance in radial direction into consideration.




e W() (7.7a)

—

By using the continuity equation

G = 21rrhxw (7.8)

wherein G represents the throughput volume per second through the outer
or inner bearing clearance, respectively, and the gas equation

p==xRT

(7.9)
the equation No. 7.6 becomes:
4+ 6P RTG dr
p-dp * ThT o . (7.10)

The integration gives the course of pressure over r (The indices "a"
and "i" mean connection with the outward and inward flow, respectively).

The boundary conditions are:

_ N

r=r,, P = Po, e
= = . n( s
r=ry, P =Py, _c:; C?q Cf
S P = Pyy ? g _\\_31 \R
r=r, P = Py \ l §
B
N\ N\

Thus the following applies to the outward flow:

a 2 i P Co RT i Na
P = ko t T h3 ¢ (7.11)
or
L o 127% GaRT r
P Pra T h? n fia ° (7.12)
If the throughput volume is eliminated, we obtain:
T Pis. ~ Ba. i Jia
R raa
or
[ S P:Zx - pzt _r__
P = P‘"’ - In F__'m LY\ Mo : (7.14)
a0
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The following applies to the inward flow

. . M9GRT .1
pr= pi+ o g

(7.15)

or
. 1._4zQG¢RTm£;
= P T h? r (7.16)

and for eliminated amount of flow
a
P«L - Pzt Ln r

P

.

i LA
= P +
P ¢ Ln & C (7.17)

or N N .
L~ D, Yac
pr = pu — B Ing
ln (7.18)
a .
The amount of flow can be given as:

h 3 1:,—p::l.
Go = Th (A )

12 ? RT Ln _F;;ﬁ (7.19)
and .
Gi = T (pi-pl)
¢ T THMRTn (7.20)

As will be shown later, the accuracy of these approximation solutions
is, in general, sufficient for the design and calculation of aerostatic
thrust bearings. Thus, for instance, these equations are used in the
papers (IV) and (V).

Extended approximation

In order to get an idea of the influence of the acceleration and
inertia members, respectively, in the equations No. 5.2 and 5.4,
respectively, an iteration is made in such a way that the term

for the energy of the radial shearing stresses da_, according to
equation No. 7.7, obtained from the simple approximation (Chapter 7.1)
and by disregarding these members, is introduced into equation No. 5.4.

The member of the centrifugal force energy can be obtained, if the
following assumption is made (see equation No. 5.1)

db 1 "v‘m _ 1 “1_ Z 2 (7.20a)
db _th EQ) gy "ghjr‘(rﬂh)dz
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as: i '
° db = ﬂ__ ar -
39 " (7.21)

Using the equations No. 7.7 and 7.21, equation No. 5.4 is transformed
into:

+2pwdr o dp o owdw o _Q° rdr =0

h*y 'Y g 39 ) (7.22)

In order to determine the pressure as a function of r, the variables
w and " must be expressed by 8 and p.- Thus the continuity equation
(cf. No. 7.8) reads:

-

G
WS rwrR (7.22a)

and the gas equation (c¢f. No. 7.9)

b
¥ = rRT (7.22b)

If equation No. 7.9 is introduced into equation No. 7.9. we obtain:

GRT
w —Z—ﬂ_m (7.22¢)
and, differentiated:
GRT { dr dp
aw =~ 2Th (——rzp + V'PL) ’ (7.22d)

According to the studies made in Chapter 6, T remains almost constant
over r. If the terms given above are introduced into equation No. 7.22
the following general differential equation results:

’

0= (p~GRT 4 yyn 4 (+60GRT 1 &'RT 1 _ - .
(P~ trmg gl dp + o5 TG T T sgRTrP)ar
(7.23)
or, using the following abbreviations
- * M = + OQG
= 'rh -
"ﬁkj' . (7.233)
é B .
b= Lt'ﬂ"htg - 66 +: for outward flow
S)} -: for inward flow
C= 3gRT
(7.24)

b
dap _ _ ¢ — F —crpt
ar - _b_ *




The integration of this equation in complete form is not feasible; 1if, how-
ever, two assumptions are made, a relatively simple solution can be found.

Assumption "a": 1In the clearance flow at large radii, it is permissible -
since there is p:§> b/r2p -~ to simplify the second term of the denominator

in the equation No. 7.24 in such a way that r is replaced by a constant radius,

e.g. the average value of the initial and final radius,

F = ™~ ; 49
or that the whole member is omitted. In the flow at small radii, i.e. for
the course of pressure in the immediate vicinity of a nozzle which opens
directly into the bearing clearance, disregarding this member involves a
certain error, which may be smaller or larger depending on the conditions
prevailing in the bearing. But since the second member of the numerator
in equation No. 7.24 is inversely proportional to r3 and the second member
of the denominator is inversely proportional to r? only, the former has a
greater influence by far than the latter when the radii are very small., This
fact will be illustrated in Chapter 8.1 by actual examples.

Assumption "b": 1In contrast to the equations given in (VI), appreciably
simpler terms for the course of pressure are obtained, considering at the
same time also the influence of inertia, if an interation is made in such a
way that, for the pressure in the third member of the numerator of equation
No. 7.24, the solution from the simple approximation (Chapter 7.1) is intro-
duced.

If the equations No. 7.14 and 7.18 are used, respectively, and the assumption
"a" 1is applied, equation No. 724 is transformed into:

(p-Fg)de « ( -R -frrkrlr)dr =0,

where the factors f and k for the outward flow are:

fo = cp. t Kalnra (7.25a)
ke = C p«ﬁh‘ffze_
lMa

and for the inward flow:

f

I

CP:Z + Kolnryg

X N (7.25b)
K. = C pll. - plL
L —
ln L
Py

If the equation No. 7.25 is integrated, the course of pressure becomes:

PR

. b r* re - (7.26)
= - 2 lnp + alnr + 7= —=f5 +kg(lnr-4)+ G =0
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. The boundary conditions being given, for the flow outwards, as:

12, p = Pia or r = Tpa' P = Poys the following equation

2 AVl St er
T(P“Pla)- r‘*mﬁ; = Oln’r"- "‘—2""(""'1.'—' n:) 2 R&(GCL rar

1 -
ka o~ _‘G;_t}.._ * _V:.\--K_&ﬁ-ﬂ'—:—r-‘- (7.28)
+ ?( M ln ha r n nm) 2 2
For the flow inwards: r = rli’ p = pli or r= rZi’ p = pZi’ and thus:
2(pd o B i by AN C i, v
?_(qup)——F—mP —_-_oln—);-+-?_-(Y,L~E)+fpﬁ(nb—r)+(7.29)
S ORT I cY SHIE 4
+ = (rtln- —- 2L
N 7 (riing - 220
R W < I O R TS AR - ( B B S o VL S
T(P- ) ?"‘L R: thm+7_(m -'M)+ zplr-h (7.30)
Y‘«, Y\u. l"‘r‘f
‘ -—E—(rl Y‘utn L—;_;)
Flow volumes

If the second boundary conditions are introduced into equations
No. 7.27 and 7.29, quadratic equatlons for G are obtained. For the outward
flow, the following applies: AGa2 - BGa + K = 0, where A, B, and K
mean the following:

_ B4 _a /5
A=zlm-ml-xhe

B

F¥& ) -

]

o< Lnrzh )
8 Y 10 V{:—n;
K = (P’“l Pm') %P:;(nu.‘no.) - | (na LY\ £ ___2___)

Thus the result is:

. B BL‘
Ga Y ‘V—%—lﬁ( o (7.31)

f—

In an analogous way, for the inward flow applies:

DGi2 + EGi -L = O where D, E, and L have the following meaning:
® Ara _ 4 [ Pui

D-zlg-mwlg

- Vi

E = oln-= |
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L = (P -pa) - Spa(ni-nl) - % (nilng - B2

and the flow volume is: .
. E E*+ 4DL
Gg - — —2-1-5' + "—,_r])'r—' : (7.32)

For the square roots only those signs are applicable which give positive
throughputs.

8. Discussion of the flow equations.

8.1 Influence of the kinetic energy.

In order to estimate the individual members of the Navier -~ Stokes
equation (No. 5.2) relative to each other, the quotient of the radial inertia
force relative to the unit of volume 7 by the largest viscosity force 3 is
established. '

FROM dw .
71 - §W dr — M = R* (80)
= T - e1 .0a
WHERE
and. :

-2 & sob
§= gRT und SW = Zrwhg &P
the comparative Reynolds number is determined as:

* PV\/"\L - Gh .
Req = gnRT T 2Tregy (8.1

-

It can be seen that this influence of acceleration becomes the greater, the
lower the radius and the higher the pressure and the clearance are.

Case 1. First, the course of pressure and velocity in a bearing which is
equipped with an annular channel and where the flow is in both directions,
along with the volume of throughput are calculated by means of the various
equations derived in Chapter 7 for the data listed below. Since equation
No. 7.24 cannot be solved, the comparative course of pressure was determined
from the differential equations by step-by-step approximation by means of
finite differences /\ p/ /. r.

Ty = C,OjS m h = 20.10° m R

= 29,3 m/°C
rq = C,00 Dia ® 6 208,10  kp/u* T = 293 °K . (8.1a)
Tha = (' OSC Dy = 65 10% R = l 85 lOu kp o/m
I‘m,: 6,153 pg; = px“:" l lO" Qo= O




radius r (in m)

Calculated
according to

0,089
0,090
0,095
0,100
0,105
0,110

Calculated
according to
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Fa

7

Outward flow.

pressure p (atmospheres)

differential

radial velocity
w (in m/sec)

extended simple approxi- continuity
equation approxi- mation equ. No. equation
No. 7.24 mation, eq. 7.13 No. 7.8
No. 7.28

6,208 6,208 6,208 12,2
6.125 6,133 6,120 15,3
5,707 5,705 5,69 15,6
5,278 5,296 Y- 16,0
4,874 4,825 4,796 16,7
4,368 4,345 44350 17,7
5,972 5,945 2,920 18,3
3,545 7,515 55491 29,P
3,071 3,030 5,007 23,9 (5w
2,520 2,591 2,359 20,
2,205 2,163 2,139 20,8
1,8%6 1,786 1,754 30,/
1,517 1,56; 1,546 bzrZ
1 1 51 .L,DU";' .y
1:888 1,000 1,000 65,4
Throughput volume G a (gr/sec)

(assumed) (No. 7.31) (No. 7.19)

1.200 1.230 1.231
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Inward flow

radius r (in m) pressure p (in atmospheres) radial velocity
w (in m/sec)

Calculated differential extended simple approxi- continuity
according to equation approxi- mation equ. No. equation
No. 7.24 mation, eq. 7.17 No. 7.8
No. 7.30
0,087 6,365 6,365 6,365 14,0
0,086 6,288 6,287 6,287 144
0,084 6,135 6,130 6,122 15,1
0,082 5,970 - 5,962 5,955 15,9
0,080 5,798 5,785 5,772 16,8
0,072 4,992 4,985 4,023 21,9 --c
0,068 4,491 4,457 4,339 26,0
0,064 5,889 3,615 3,749 52,4
0,060 3,120 2,980 2,918 44,5
0, 58 2,612 2,432 24360 56,38
Ov?57 29298 29177 2’012 6759
0,056 1,905 1,524 1,592 87,2
G,055 1,000 1,000 1,000 141 ,4

Throughput volume éi (gr/sec)

Calculated according to (Assumed) (No. 7.32) (No. 7.20)
1.053 1.138 1.138

It can be seen that in bearings where the dimensions of the radii are large dur-
ing clearance flow, the variation of the kinetic energy of the radial velocity
has only a small and unimportant influence. The comparative Reynolds number is
in this case Rei <§ 1. A1l the equations derived in Chapter 7 yield practically
the same result.

Case 2.

If an inlet nozzle opens directly into the clearance, the Reynolds num-
ber of the clearance flow in the immediate vicinity of the orifice is: Rei') 1.
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At very small radii the following applies to equation No. 7.24:

crp2 and% << 23,

i.e. the increments of centrifugal force and friction become small and negligi-
ble compared to the kinetic energy. The equation No. 7.24 is reduced to:

ﬂwl o

£ = 1
dr b .
p - r2p a
oyt
or, re-transformed into the original form g j:
. /P«
Gn"—' .
\ P
RT dp + wdw = O.
p g :
N\

This equation describes the friction-free flow in a radial diffuser. 1Its solu-
tion is:

. (8.2)

RT lnp + zl; +C =0

The clearance flow at small radii is only interesting, in this connection, for

the flow outwards. If one does not consider the cases where the gas in the bear-
ing clearance reaches the velocity of sound which changes subsequently into super-
sonic speed (this case has been described in detail by reference (VII))and if one
disregards the fact that the change of state of the gas for the flow in immediate
vicinity of a nozzle is not, as assumed, isothermic {(this error is, however, quite
small), the pressure after entry into the clearance had to increase corresponding
to diffuser flow, according to equation No. 8.2. The theoretical pressure pro-
file, determined by means of stepwise approximation through finite differences

Np/ /A r for a bearing with the values

Tio = 1 mm h = 20.10°n

T = 68, 5 mm R = 29,5 wm/°C (8.2a)
ot 1.10%kp/m* T =293 <K

a = 0,177 gr/s n = 1,9. 10 ltp °/m .

is plotted in Diagram 2 as a function of the pressure profile which were
obtained from the two approximations No. 7.13 and 7.28, respectively. The
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interaction of unfavorable factors such as (1) poor conditions at the inlet
(on account of the difficulty to obtain clean nozzle edges), (2) flow in
hydraulic and thermal take-off run, (3) occurrence of the highest possible
Renumbers in each clearance flow, justifies the assumption that the flow
does not undergo this high increase in pressure which had to be overcome
within a few tenths of a millimeter.

Another problem, however, which is important for the design of the
bearings comes up here: Which pressure p; at the inlet of the clearance 1is
required in order to obtain that pressure profile which is described by
the three equations (Diagram 2) identically in the area of large radii? For
applying the pressure p; calculated theoretically according to equation No.
7.24 or equation No. 7.28, would not guarantee reaching the desired course
of pressure. The simple approximation No. 7.13, on the other hand, gives
too high values for py.

The radius r)p where the pressure reaches a maximum (beyond this there is no
longer an increase of pressure in the flow) can be calculated from equation
No. 7.24 for £L =0 . 1If it is assumed that dp . o there is, as a

consequence: dr
a2 - b = 0 , and, therefore: —
TK o3 r Gah
K « = | gn . (8.3)
The inherent maximum pressure cannot be found from equation No. 7.24 in a

simple way. The extended apprOleation No. 7.28 yields, as can be seen in
Diagram 2, a value which is somewhat too low but still applicable. It can be
assumed that the pressure profile between p; and p, remains almost constant:
thus one can establish the required pressure Py.

A method of circumventing the questlonable range between p, and Py is
the following: Next to the nozzle, a depression is B
provided of the magnitude ry, on the side of the r

clearance. In this case, the radius rj; is identi- \\§\§<\C\f\ OO

cal with ry, and the pressure p; = pk For the

- i/
example given on page 33, the result is: ,CL//
ry = 1.58 mm, pg = 6.775 x 10% kp/m2 (cf. No. 7.28).

Diagram 3 (page 36) shows the course of the Reynolds numbers over r
for the example mentioned above. 1In the area of small radii, Renumbers of

over 1000 are reached, while Rel* increases beyond 10.
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8.2 1Influence of rotation.

. If, according to equation No. 5.2, the quotient of the centrifugal
force ¢ 2 relative to the unit of volume by the highest viscosity force j
is written, the following applies according to equation No. 7.21:

kY
N e r OF er Q*h %
L3 - 3 dlw e _3Yz W - Rez (8.38.)
p, N G
or by - P (e C;
- P u.a(l = e—_—
s qRT Sw ITrgh (8.3b)

the second comparative Reynolds number is given:

ro*p kit amhdrintpr (8.9

Re, = 3ngRTW ~ 3gnRTG

The influence of rotation depends in a high degree from the conditions of ()
operation of the bearing; it increases quadratically with the factor p.r. 44,

For the example on page 31, the pressure profile and the amount

of flow was calculated with 2L = 1570 1/sec.
Outward flow Inward flow
Amount of flow G(gr/sec)
calculated according to No. 7.31 7.32
1.280 1.110
Outward flow Inward flow
Radius r (m) Pressure p Radius r (m) Pressure p
(atmospheres) (atmospheres

calculated accerding to No. 7.28 No. 7.30
C,089 6,208 C,087 6,365
G036 5,151 0,055 &, 505
¢,095 5,722 o,k 6,175
C,LOQ 5,225 C,CL2 5,€50
¢,1C5 L,533 0,030 5,770
0,110 %,97? G,076 5,565
0,114 5,87- c, 072 4,503
C,118 3,505 C.C58 4,595
0,122 5,062 0,054 3.725
C,125 2,511 G,030 2,95
¢,150 1,7¢8 0,057 2,080
O,&?l 1,579 0,056 1,565
0,132 1,552 G,055 1,CCO
G,1%3 1,000
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In the case considered here, the influence of rotation is_very small, as
is shown by a comparison of the pressure profiles for {4 =0. (pp. 30 and
31). The comparative Reynolds numbers assume values which are: Re*2 1.

In reference (VI), the influence of rotation on the load capacity was
studied in an aerostatic thrust bearing with outward flow. It is pointed
out that a reduction or increase of pressure can occur in the bearing clear-
ance, compared with a bearing with = 0, by the rotation of a bearing
disc, depending on the conditions or the parameters, respectively r /r

Pja/ P,, and 3 S22 1a/10 RT. For the evaluation of each condltlon only
the boundary conditions for which the one case or the other may come true
are to be established here. It can be concluded that in isothermal, laminar
flow in outward direction for

(fe - r¥[pn + 29*“—79::] > Efn— (Fln g + feln be ) (s.up)

isa

the pressure in the bearing clearance, according to equation No. 7.28, is
smaller in all places r which meet this condition when there is a rotation
than the pressure which would occur without rotation. Analogously, in the
flow inwards there is, according to equation No. 7.30, for

Y 1
- Vs
Q) > BLBl(pln - infs v L50) o
n - w
A
an increase in pressure compared to the bearing at rest. If the unequality
sign is reversed in the conditions given above, the pressure in the clear-
ance becomes greater (in the first case) and smaller (in the second case)
than when no rotation takes place. At high pressure ratios p,/p , rotation
causes, as a rule, an increase of the load capacity in the part 3f the bearing
where the flow is outwards and a reduction of load capacity in the part where
there is an inward flow. (cf. the results given above). But since the
influence of rotation in static gas bearings is, in general, very small, rota-
tion is disregarded in calculation of bearings.

In an analogous way, an increase or reduction of the volume of throughput
corresponds to a pressure reduction or pressure increase under the conditions
given above with r = ri, and r2 Tyis respectively.

8.3 Gasdynamic influence.

For the laminar, radial clearance flow, the course of the radial velocity w
averaged over the clearance is derived as a function of r first. This
calculation is only an approximation, since the

velocity distribution v,. over h had to be ///// / / /////{41
taken into consideration in an accurate investi-
gation. 1In contrast with the studies made in |
Chapter 7, it is permissible to assume an adia- s

batic change of state for the clearance flow ; = 1
N\
NS SANN NN
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in the transsonic region. From the equation No. 7.22 it may be concluded
that, for Q = O, the fellowing applies if the continuity equation No. 7.8
is considered:

I 24 TthGerdV‘ + dxf) -+ ngw = O . (8.5)

Transformation of the second member:

The following equation applies to adiabatic change of state:

dp p o dy

LI o3 S
- 32

R X’ X’ (8.6)
The differentiated continuity equation No. 7.8 gives:

dy __(dr , dw)

X~ r w (8.7)

If equation No. 8.7 is introduced into equation No. 8.6, the result is:
dp P (dr dw RT ar . dw
——m— BB, == o—— — —— o — — + or—— . .

The temperature, expressed by the adiabatic equation, becomes:

T = TO — E-S—C_P— ] (8,9)

where w * 0, T = T,. If equation No. 8.9 is introduced into equation
No. 8.8, the following results:

d A w* Lw
¥ 2R(T-E & + ) o

The introduction of equation No. 8.10 into equation No. 8.5 gives, with
consideration of

AR % -4

-
=

Ce 22 (8.10a)

the differential equation for w = w (r):

4 MW+ A1
dr _ 2 RTew — zc4w —— 1 (8.1D
dw + 24T rwho " - o1 W
hy s ®XRTeF + TR
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where the sign "+" applies to the outward flow and the sign "-" to the in-
ward flow, If it is assumed that dr/dw = O, it appears that the r-w function,
as represented, runs parallel to the w-axis at a certain velocity, which is
the velocity of sound

2
We = 'V;j%‘ gRT, , (8.11a)

and is obtained when the numerator is zero, since the denominator of the
fraction on the right side of equation No. 8.11 cannot reach an infinite
value. Thus the numerator of the fraction is positive for subsonic speeds,
and negative for supersonic speeds.

Flow towards inside.

Since the third member of the denominator in equation No. 8.11 is, as a
rule, small compared to the second, the entire denominator of the fraction
remains negative. For w & w_ the whole fraction becomes negative, from
which it can be concluded that the velocity increases when the radius de-
creases. Velocity of sound can only be generated at the outlet of the
clearance; supersonic velocities cannot occur in the clearance.

Flow towards outside

In a subsonic flow starting at r = the course of the flow depends on
the relative magnitude of the 1nd1v13ual members of the denominator. For

24T rwh -1 WL>3eRT" l
G 2
h g (8.11b)

which is the regular case, the flow is accelerated on account of the great
pressure reduction of the gas in spite of the fact that the clearance is to
be considered geometrically as diffuser. If the pressure of the bearing
gas is sufficiently high, velocity of sound can appear at the end of the
clearance (r = r94) if the above condition is fulfilled.

Looking for the magnitude of the radius ry, of the bearing where velocity of
sound is generated in the clearance - which changes over to supersonic
velocity with increasing radius - one will find the answer in equation No. 8.11.
Since dr/dw must be positive in order to fulfill the above condition and
the numerator of the fraction is negative for w > Wg it can be concluded
that also the denominator of the fraction must assume a negative value.
This is, however, only true if the following applies:

TRr wh w-1 Wt
> 4 h?»:— Y TIg v (8.11c)

® RTo 5

For r = Ty and w = W the following applies:

(8.11d)

:‘____ > Z.LPTTQ V‘QW: Bﬁ—-'] W}

—
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from which the following can be derived by means of given values:

<2 ~1 T

Z{,RTO— Eg Ws

Z‘ITI‘:ZW.? (8.12)
hG

re <

If the continuity equation No. 7.8 is censidered for the respective
place

. (8.12a)
another equation results:
R =1 PR NTOIN
. | (=RTe - Zg— Wi ) ¢ (8.13)
fis 12 Ws
]
An example using the following values
LI / ko
To = 293 °K P = 1,85.1C" kp s/m
S IR L = 50.10°m (8.13a)
X = 1’4_ G-a_ = 2,5.10 kg/s
Wy = 314 m/s :
gives: rm =3,0x 1072 m.

Thus supersonic velocities can occur in the eclearance only at radii which
are smaller than, or equal to, rj. This fact is very important for the
design of aerostatic bearings with radial flow

since, in the region of supersonic

flow, the pressure in the bearing is
greatly reduced and can even assume
negative values relative to the sur-
rounding pressure, It need not be
specially emphasized that, in this case,
the load capacity would be reduced
correspondingly, 1In order to have

a bearing with proper dimensions,

Tia must be larger than ry.
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The compressible radial ///
source flow from the center of two Ws + -
dises in close viecinity to each other
is described in references (VII) and
(VIII). With sufficiently great
bearing gas pressures, sound velo-
city is reached at the beginning
of the bearing clearance, i.e, at
the opening of the inlet orifice.

The radial diffuser formed by the
two discs produces a further
acceleration to supersonic flow
and similar conditions as in a
Laval nozzle can be observed here.
The great pressure reduction in
the supersonic region can go so
far that the pressure in the
clearance can become lower than
the surrounding pressure, 1In

Ra
such cases, there occurs a pres-
sure impact which is connected r
with a sudden change from super- s

sonic to subsonic speed. I
st T

Vs

The Figures on the right side show: BOTTOM p. 41l: section of a
thrust bearing with bilateral flow. UPPER, this page: Course of the velocity;

Wy = velocity of sound. Supersonic velocity for the outward flow between r
and r Pressure impact at r Subsonic flow between r_, and r._, and also

o .
for tﬁe inward flow. LOWER, tﬁ%s page: CORRESPONDING pRESSURE PROFILE,

8.4 Conditions of separation.

With small heights of the clearance and large radii, the friction
forces are so strong that, inspite of the enlarged cross section in the out-
ward flow, there is a reduction of pressure rather than an increased pres-
sure. Thus no positives pressure gradient is imparted to the layers in proxi-
mity to the wall, as it is the case with larger widths of the clearance, and

a separation will hardly occur. The measured friction values for laminar

and turbulent flow through narrow divergent clearances (IX) confirm this
hypothesis,
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' 8.5 Conditions at the transition from laminar into turbulent flow.

In the literature, the clearance flow is designated by a Reynolds
number which is similar to Req*, which is, however, formed with the
hydraulic diameter of the radial clearance flow

LE _ H.2rmwh _ 8.13b
dn = 5~ 1.2¢7T 2h (8.130)
} and therefore reads:
R. = Zhw _ 2hyw 2hpw _ G 20 o*  (8.14)
€ N T gp gy RT Tgor h e

At constant viscosity 7 and volume of flow G, there is a hyper-
bolic relation between Re and the radius in such a way that the Renumber
increases with decreasing r.

Although it is not necessary for the calculation, the friction co-

. efficient /LL for the clearance flow will be discussed here supplemen-
tarily. If the radial pressure decrease is defined as
ar
dP = A '255' wh o
d, (8.14a)

where dh = 2 h means the hydraulic diameter of the clearance flow, and

QWZ/Z the pressure head of the average radial velocity and if the above
equation 1s equated to No. 7.6, then

: 2p wdr
dP'N%{%‘” - s (8.14b)
gives the following result: ;l‘L = ;g—
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For the flow of air through narrow clearances with constant rectang-
ular cross sections, reference (VIII) gives a synopsis of the critical
Re-numbers found by measurements. The transition value is, for example
1800 — 2000 in a channel with sharp edges at the inlet, but 2400 in a
channel with rounded-off edges at the inlet opening. In reference (IX),
values of 2120 = 3810 were found for clearance heights between h= 50—

250 x 107 %m.

The results, reported in references (VIII) and (IX), of experiments
on air flows through parallel clearances with expanded lateral borders
suggest a connection between the critical Renumber and the degree of
divergence of the channel. In the extreme case of the divergent clearance
flow, i.e. in the flow between two parallel circular discs with eccentric
gas feed across a nozzle, the transition point occurred, according to
reference (VIII) already at Re = 1060. If one studies, for comparison,
the calculated example on p. 31 and the Diagram 3, this low transition
value can be easily understood. With small radii and high Renumbers,
the flow starts as turbulent. It is a fact which is generally known that
a change from turbulent to laminar flow takes place only at considerably
lower Re-numbers than in the inverse case, i.e. transition from laminar
to turbulent.

According to equation No. 8.14, it is to be expected, considering
the variation of the Renumber over r, that the transition will be from
laminar to turbulent in inward flow, but from turbulent to laminar in out-
ward flow.

The flow in the bearings described in the present paper does not
show, as a rule, high degrees of divergence or convergence on account of
the geometrical shape (radial flow from a closed annular channel). Con-
sidering the poorly defined border line between laminar and turbulent
flow, it is advantageous to avoid the transition region in the design
of bearings. On the other hand, one can assume that, in the bearings
mentioned above, there will be laminar flow when the highest Renumbers
occurring there are below 2000, and turbulent flow when they are above
3000.

The experiments described above referred to fixed boundary walls
of the clearance. In the practical operation of a bearing, the critical
Renumbers are influenced by the rotation of a disc by the action of the
vg components which are superimposed to the radial flow in such a way
that there occurs an earlier transition from laminar into turbulent or,
respectively, a delay at the transition from the turbulent to the laminar
flow.
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8.6 1Influence of labyrinths in'the bearing discs.

In a pair of discs of the testing setup (Figs. 1 and 2), experiments
with recessed throttle labyrinths at the clearance outlets were performed in
the region of laminar flow. The picture which follows shows the bearing
discs used in the experiment and illustrates the size of the throttle sites.
It was believed that there would be a greater pressure drop at the labyrinth
sites than could be obtained in a smooth bearing clearance.

It was found, however, that the grooves produced a decrease in the
load capacity of the bearing at an equal throughput volume, or an increased
throughput volume at constant load capacity, compared to the bearing without
labyrinth grooves. The fact that the smooth clearance induces the greatest
resistance in laminar flow, has been verified again in this case. Only in
the region of turbulent flow, baffle plates and labyrinths are effective.

Fig. 1. The pair of bearing discs with recessed throttle grooves
(labyrinths) did not prove to be useful,
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9, Turbulent, isothermal clearance flow.

Whereas the friction equation for the laminar clearance flow could be
defined in a simple way by the introduction of the viscosity, the friction
member dagp of the flow equation (No. 5.4) is governed by a more complex law
in turbulent flow. It is useful to introduce a friction coefficient },
which depends on the Re-number and can be experimentally determined. The
friction energy of the radial shearing stresses of the wall, therefore,becomes:

! d’ w WLOI.Y
= + —_ + — .

"4 for outward flow: '"-" for the flow inwards.
I1f the centrifugal force term of (No. 7.21) is not taken into econsidera-
tion, the above equation in connection with equation No. 5.4 gives:
wrdr ap w.dw  _

¥ y WaY 9
4gh ¢ 9

Ry P . (9.2)

In reference(IX), measurements of air currents in narrow clearances with rectan-
gular cross sections are reported. Three cases were studied which differ from
each other by the shape of the channel.

a) parallel plates, b) parallel plates, ¢) widening plates,
parallel edge widening edge parallel edge
boundaries. boundaries boundaries

Re = constant over x Re # constant over x Re - constant over x.

The -l-T values were given, for the cases a) and c¢), as a function of the
Re-numbers. These values are, however, not generally applicable, because only
the first two members of equation No. 9.2 were considered in the back calculation
of Ay, whereas the member w.dw/g was disregarded. he influence of this member
was most comspicuous in case c). It was found that T decreased in the experi-
memts with increasing divergence of the plates. Actually, the flow is slowed
down, which causes a recovery of pressure which was considered to occur at the
expense of a reduction of friction.

In the case b) where Re varies over the length of the clearance, neither
local nor average )VT values were determined in the paper quoted above,
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The measuremerts for the case a) are illustrated in Diagram 4.
Whereas the conformity with the theory is very good in the laminar region,
the measured points in the turbulent area scatter somewhat more. In
the paper mentioned above (IX) the influence of the roughness of the wall
was not emphasized. The roughness measurements which I made in a finely
ground thrust bearing disc are compiled on p. 49, I suppose that the
Plates used in the experiments described in reference (IX) had approxi-
mately the same average roughness (Ry = 1.5 x 10-6 M) Whereas the
experimental points in (IX) are in rather good agreement in case a) for
h =147 x 107® m (h/R, = 98) with the Law of Blasius for smooth boundary
walls

0316

Ar = o=
Re (9.2a)

i.e., at this height of clearance, roughness does not have any influence
yet, practically speaking, higher -X-T values were obtained at h = 127

x 10=6m (h/Ry = 85) on account of the greater relative roughness. It

can be, furthermore, seen in Diagram 4 that the )LT values for constant
relative roughness tend towards constant values with increasing Re-numbers
-~ which is a known fact, - these values depending only on the magnitude

h/Rm.,

In order to make an approximate calculation of a thrust bearing as
far as course of pressure, load capacity and throughput volume are concerned,
in the turbulent region, the term w.dw/g in equation No. 9.2 is disregarded
and, besides, a constant value tI:T deduced from Diagram 4 based on an
average Re-number and a known relative roughness is introduced for JLT
It has already been estimated in Chapter 8.1 for the laminar flow, in
which ranges it is allowable to disregard w.dw/g. In the later calculations,
in most cases bearings are considered where the clearance flow occurs at large
radial dimensions. Likewise, the ratios of the radii of the bearing between
the inception and the termination of the flow

Sia ;L
Mo N (9.2b)

as well as the ratios of the corresponding local Renumbers do not become
very large. The 1)-T value which is assumed disregarding an influence of
roughness ¢\ Re~4 does no longer change very much with r.
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For example, for Toa

1.50

|5~

»

r1a

The average Reynolds numbers Re for

#

which the corresponding L ., values are to be

determined are found for the outward flow
from:

. ) r,, .
Ca ng?(v-1a’_na) .4C

and for inward flow from:

— = GL Lnr1.l'[rz; ’
Rei 2wgyp (fi+n)

(9.2d)

The equation No. 9.2 is transformed by the
simplifications described above to:

1.11

.I{“

P

(9.3
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Roughness measurement in
‘ disc of a thrust bearing
(finely ground)
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From the continuity equation No. 7.8 and the gas equatlon No. 7.9, the follow-

ing can be
% G*RT 1
conc}uded _‘*: ’-IJ_TTTR;.PL + dp = 0

after integration with consideration of the boundary condltlons
T = T P = P oder T = I P = Dia
r = Ta D = Pu 0 T = Ta D = Pa
the following is obtained for the flow outwards:

p%p;-ﬁ%%q—-i)

or

1 ~ 7\QRTGQ
P = Pia + 8TTT h"’g (7-‘”';7";)

1f the volume of flow is eliminated, one obtains:

L pt Pz = Ve (1
pr= pu - BEfa (Lo 4
or
pr = Pl o+ Pa- P (2 -4
1o
and for the inward flow:

L L inRTGt a
P P\L 8,n_x.h3g (r\

. A RT Gi 4
PLe B g (w7

!l

and, when the volume of flow is eliminated:

T Pdt- _%L‘Eu’ (.::;._1_)

A

or.

and

~ . ) 8rt kg (P -ni)
G ‘f-ﬂrc RT (% - &)

(S44)

(9.4a)

G95)

(9,6)

(9,7)

(9,8)

(9,9)

(9,10)

(9,11)

(9,12)

(9,13)

(G,14)
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10. Load capacity.

The effective axial thrust Kgeg which the bearing can take up can
be determined from the difference between the force acting in the carrying
bearing clearance and the force acting upon the backside of the movable

bearing disc.

ngs"“ K= Kn (10,1)

where Ky is the axial force of the carrying
side of the disc, and Kyp is the counter
thrust of the non-carrying side. If the
bearing is built in such a way that only
one side can carry, the counter thrust is
to be formed by the surrounding pressure

P> and the area of the bearing (cf. the
upper drawing)

Ke = o F (10,2) | 0
/ Py

where P, is the pressure surrounding the
bearing and Fy = (rza - rzi‘) is the
bearing area of one side og the disc. 1In
a bearing which can be loaded bilaterally
and is built symmetrically the counter
thrust is a magnitude which depends on the
clearance hyy, or on the pressure in the
clearance on the non-carrying side, respec-
tively (cf. the lower drawing). Since,
however, hII is appreciably larger than hI
in a fully loaded bearing, the equation
No. 10.2 can be applied here also in most
cases.

The axial force of the carrying bearing
clearance can be obtained by integration
of the absolute static pressure in the
clearance over the whole bearing surface.

Kr = 2w v[:opr'dr

I

\

NED
K

T
‘ ngs@
S| =

he

L/
7
N1
N
ﬁ;ﬁ

(10.3)

An integration of equation No. 10.3 can be performed analytically only
for the solution of the simple approximation (cf. Chapters 7.1 and 9.)
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10.1 Radial isothermal laminar flow

If the approximation equations No. 7.14 and No. 7.18, respectively,
are introduced into equation No. 10.3, the result for the outward flow is:

1

fia Ra | (10.4)
Kia = 2T P |V || 1 - Sl vV (“"“) [ni .ar
n L Via
¢ . Yoo Via
The results for the inward flow is:
L Lo |
4 -~ - S (10.5)
KIL:ZWP1LIP 1-—-—?—("%‘—)' Ln% .dr .
LI n —Y::i

Outward flow.

The solution of the integral for the outward flow was already given
by references (IV) and (X), but will be repeated here for the sake of com-
pleteness. With the abbreviation

Pra \*
a = .:l;:;&gi;)_ (10.5a)
oA
and the substitution
U1=4—QLHL P":Y\qo.. Ll{'/l
g-ut " ' Pa
= f.e = r= la LL=T0:
e Aa-ut
Z . ————
dr = = 5 fa-© @ Lo (10.5b)
. 2(1-ut)
] 2
u=V4-aln$— r-af=—%—\fm€ T .udu
[ 1a
the equation No.10.4 becomes: o
L2 (R 2y (10.5¢)
Kia ='-%Ranae“fu-ue“ du -

1

The above form can be simplified by partial integration, and the result is:

- o (10.5d)
2t Pra Pa _Zut
_Q_ue—""u'l +9-J e ¢ du} .
1

A

z
Kra ==k pu i €5
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If the remaining integral is transformed by further substitution, namely

a2 U du = V—-dt
10.5
w = 1 t =& _ (10-5¢)
= Do - Pa VJE-
U= P t ~pala
the following is obtained
%FT;' £ (10.5£)
- Bo (M) _ g - y[O % .
KIa W}o‘“n“{}oa(_ﬁ:) 1 7 © [z e dt
The integral still remaining is the error integral
1
~t* - (10.5g)
[edt = T (gm0

1
which is shown in reference (XI) for given limits in table form.

Thus the following transformation is obtained:

oo = Tpars 5 {Be 8] 1~ 00 IE) - O]} oo o

Kig = T Pa Vo Cuo | (10,6)

where
o (o ()= 1 - JBE R [0R)E)- )]} oo

is a dimension-less load factor' which depends only on the pressure ratio

P9a/p1, and the ratio of the radii rp,/ry,. 1In the following Table, the Cy,
values are listed whlch were calculated as functions of the two parameters.

|
p:.a. /p4a, \
0,00 0,20 0,40 0,60 0,80 1,004{
oo 0,000 0,200 0,400 0,800  C,800  1,0007
100,000 - 0,216 0,420 0,626 0,834 0,995 .
10,000 0,40% 0,453 0,559 0,689 0,825 0,95 0
5,000 0,451 0,491 0,561 0,69 0,815 O,50v o
51333 | 0,465 0,499 0,575 0,675 0,773 0,910
Tac 2,500 0,450 0,486 0,552 0,638 0,728 0,40
2,000 0,431 0,453 0,508 O, 1579 G,661 0,750
Tra 1,666 0,382 0,402 0.&45 0,502 0,568 0,650
1,428 0,317 0,313 0,362 O 505 0,455 0,510
1,250 0,250 0,240 0,260 0,289 0,521 0’555
1,111 0,124 0,126 0,140 0,154 0,172 0,1e9
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Diagram 5 (p. 60) shows the graphical plotting of the load capacity fac-
tors for the flow in outward direction.

Inward flow

By means of the abbreviation B\
b 4 — (Tof—:-) (10.6c)
ln &= .
R}
and the substitution
2 (21 .
-a/]——bln—r—\- Y\ang V=/}
vi-q A I (10.5d)
r=-riem M= V=g
vi-A
d?ﬂ = ﬁu ?; e b -V
2(v%1)
. 2 b
vV = Vﬂ—bLn% rdr=%m Sl vV dv
the axial force deduced from equation No. 10.5 is
’ X 1, alviy)
Kie = 5 TP ij vie P dv (10.6e)
4%
Bl
or
" 2 2v*
- b o
KIL -E-TTRL Y}L b p‘v.v.e av I (10.6£)
L
I2H
- wWhich gives, after partial integration,
2VE 4 1 2y
K [ = Trp'un(. ~Tb— Ive?( - ﬁ? dv)
‘“ ™ Jg_ f (10.6g)
‘Pﬂ. la‘“-
By further substitution, namely
st= % dv =2 ds
> (10.6h)
= s
_ pu' = l ”2'
AV Pr > Pt b

the integral is simplified and, with the limits introduced, it reads:

N e /b st
K = T Pl { 14— 5::(%)_ e P f&/’i‘ e dS} . (10.61)

Pac
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The remaining integral represents, according to reference (XII), the progression:

3 sS s? .
fe ds =‘5‘*’3‘.ST.T Tt Ezr ¥ T Y (o) (10.63)

For the btoundary conditions between 0 and 2, the qr values can be obtained
from a Table given in reference (XI). For limiting values larger than 2,

the series was discontinued, for the present calculations, after the 10th

member. Thus the force K;i becomes

K = T Pa e {4 S:L EL) /—E— é%“l(t/%—) - L})(?%}/%:”} (10.6k)

Kri =T P fi Cui | (10,7)

where

Cu = 1- & Pﬂ ;h /_— e [9’ l Et/::)} (10.7a)

represents again a dimension-less factor which depends only on the ratio of
the pressures and radii. The Cxi values were calculated as functions of the

two parameters; they are compiled in the Table which follows and plotted
graphically in Diagram 6 (p. 62)

ng' /P,,(_
0,00 0,20 0,40 0,60 0,80 1,00
oo 1,000 1,000 1,000 1,000 1,000 1,000 | (10,
10,000 0,881 0,095 0,911 0,936 0,862 0,990 75)
5000 0,806 0,816 0,835 0,334 0,508 0,90
L. 3333 | 0135 ol7as 01723 0168 01856 0,910
T 2500 0,655 0,664 0,695 0,736 0,784 0,840
— 2,000 0,565 0.576 0.605 0.645 0.695 0,750
Tii 1 666 0,468 0,478 0,506 0.543 0,585 0,640
1,428 0,%66 0,373 0,396 0,425 0,466 0,510
1,250 0,253 0,258 0,295 0.259 0,327 0,360
1,111 0,125 0,13 0,143 0,156 0,172 0,190

10.2 1sothermal turbulent radial flow.

If the equations No. 9.7 and 9. 11, respectively, for the course of pres-
sure, derived for simplified conditions (w.dw = 0, JL 0), are introdiced into
equation No. 10.3, again an analytical solution of the integral is poscitble.
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Outward flow

The equation

iy s N
Kia = Zmomjr 1 — 1—-—-—%’-*(-@‘ ‘F) dr (10.8)
o ™ T

. using the following abbreviations

1~ (B

- and = 1-mM
m T I n (10.8a)
rlﬁ-
becomes Via
Kro = ZTer.j Vmﬁla— foaratdi (10.9)
o °
According to reference (XII), the solutions depend on the magnitude of
coefficients.
PZG z na.
a) for n < 0, i.e. if (E“) —ﬁ: (10.9a)
the result is
= * ._Y;.‘_“ )on' —_— _&-)l A <+ _VI‘._) -}-
Kia= T1a P {('H- fain / P (Tm ( 2n (10.10)
no.) m* [ (2 Yia ) (20, 4
arcsin +1)— arcsin +
+[rxo~ L{Hp-— Y‘ (V‘h
L
°or K[a =T Vo P»w. CV~0~4 * (10.11)
. P /p \ . Y;Q
b) £ 0, i.e. if =22 AL, (10.11a)
) for n > i.e. i 4“))rm a
the following applies
' _ Tt Via M) Bo _ [fia)* m
Kia “Tnup‘“{("*mzn) (no} (/H— 2n> (10,12)

= ‘l

|
(,E; L“qy——[_ArcCOs 1 Y‘m ) Ar‘cCos( 4)j

or

\ -
KIQ": Trnz:). P»m. Cua.z. (10,13)
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Depending on the sign of n, the first or the second term must be used for the
determination of the load capacity. The factors C are dimension-less values
which depend on the ratios of the pressure and the radii. They are compiled

~ in the following Table, and in Diagram 5a.

pza. /p'l&
0,00 0,20 0,40 0,6C 0,80 1,00
100,000 | 0,075 0,226 0,410 0,605 0,801 0,999 | %
10,000 | 0,248 0,%29 0,473 0,6%58 0,311 0,990
5.000 | 0,3%7 0,39 0,515 0,651 0,802 0,960
34535 0,385 0,448 0,525 0,645 0,771 0,910
. 2,5C0 | 0,40k 0,446 0,515 (,62C 0,722 0,840
2 2.000 | 0,392 0,425 0,482 0,564 0,651 0,750
- 1,666 | 0,359 0,380 0,428 0,692 0,576 0,640
“ 1,428 | 0,305 0,321 0,354 0,405 0,459 0,510
1,250 | 0,223 ©,2%0 0,254 0,285 0,322 0,359
1,111 | 0,120 0,130 0,146 0,157 0,172 0,1&9
Inward flow.
The integral
(i Pui\x '
= zrpe [ 4 - 2208l (1 -4 dr
a0 4 4L 10.14
5 Vai i ¢ )
using the following abbreviations
P2
1 - [
K = tEZT%%%l and L= 1+ k (10.14a)
‘ hi r: _
becomes r4L n )
K = ZTlP«i J V lri—rokr dr. (10.15)
Since the coefficient 21 is always greater than zero, there is only one
solution:
L Ky (G K\ G Pl
Kﬁ=‘Wnﬂ%{4‘z?) (% - 7))V b (10-10)

_ L’?}Z [ArCCos(Z-k-e- - 1)" ATCCOS(?T(@' % - ):\}
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The following is obtained if a load capacity factor , C ki» 1s introduced:

\
Kri = T ¥ Pai Cw - (10.17)

The following Table and Diagram 6a shows the relationship of these C Xi
values:

pz( /qu,
0,00 0,20 0,40 0,60 0,80 1,00
10,000 0,941 0,942 0,949 0,960 = 0,975 0,590
5,000 0,868 0,872 u,885 0,05 0,930 0,960 (10
5.3%3 0,765 0,791 6,800 0,836 0.&71 0,510 o

e 25500 0,695 0,702 0,725 0.755 0.7Ch  O.&ku
L 5500 0,5¢4 0,603 0,625 0,661 0.702  G.750
hi  1lee6 0,488 0,498 0,520 0.55% 0.504  0.650
1,428 0,374 0,385 0,406 0.i%4 G.469 0.510
1,250 0,256 0,258 0.282 0,302 G.325  G.559
1,111 0,130 0,131 0,149 0,156 0.16&8 0,189

11. Optimization and economy

11.1 Optimum geometry for bearings without compensating space.

If the bearing gas is fed into the clearance of the bearing at the site
T4 = ry; =T, - this can be done by a circular clearance as feeding organ, or
by individual nozzles which open into a compensating channel of close to zero
width - and if the flow is always in radial direction, r, can assume any value
between roj and Tog- Therefore, criteria must be found for which r, has the
most economical or favorable value, respectively. '

A) Bearing for the smallest flow volume

If a bearing shall have a gas consumption which is small as ossible
g o r ?

i.e. the output of the bearing gas compressor shall be at a minimum ai given
pressures, namely:

PB pressure of the bearing gas in front of the throttling devices,
Pla = P1i = Pq highest pressure in the clearance

P2a = P2i = Py pressure surrounding the bearing

and if the radii rpj and r,, are given, the following must apply:

Gy = Ga + G, = Min ! (11.0a)

or (G + G

= (11.1)
Ao 0
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Diagramm 6a |
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Laminar flow.

If the equations No. 7.19 and 7.20 are introduced into equation
No. 11.1, the following will occur:

"o (whi(A ) Th (Pt - PL‘) -0
afo(ﬂzqRTLn“‘* i 129 RT an )

(11.1a)

If the constant factors are omitted and the equation is further transformed,

the result is e Via
?) (Ln w tinn
W\ ngEhE )

=0 (11.1b)

and

oTa (Ln N mﬁ ) =0 . (11.1c)

The differentiation with respect to r, thus gives:

Y;&_eo

J (11.1d)

n Lnru +——Ln

for which the following results:

Vo ia

= 12 or Vo = ]/na Yic (11.2)
L Yo |

In a bearing with laminar flow and lowest gas consumption, the radius of the
inlet site r, must equal the geometrical average of largest and smallest bear-
ing diameter. This formula (No. 11.2) is illustrated,by way of comparison, in
Diagram 7. It can be easily seen,besides, that the amount of throughput is a
minimum when both partial flows are of equal size.

(] .
G, = G;-
On p. 68, the course of pressure in the bearing clearance, the volumes
of throughput and the load capacity for constant initial and terminal pressures
and given main dimensions of the bearing are shown diagrammatically for varia-

tions of r, between r,; and r, whereas G is infinitely large at the sites

rpj and rp,, and has the smallest value at ry = \fria . Ty;, the load capacity

K1 increases continuously from rpj to r,,.

Turbulent flow.

I1f the equations No. 9.13 and No. 9.14 are introduced into the equation
No. 11.1, the consequence is:

> [ T hg (P =-AY) +M mhhg (e i) ]= 0 - (11.29)
e

ots || Ao RT (& - %) A RT (- &)
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If the constant magnitudes are omitted and it is, furthermore, assumed that
~ 5 . .
Ta = XlmTi, the following remains:

’a[' 1 . 1 ]—O (11.2b)
Z A A A - .
e -m VEwE- %

o

Partial differentiation with respect to T, and further simplification gives:

r _ &
T— v =5 1 (11.2¢)

and thus for the radius in question:

= 7+ (11.2d)

or the following equations:

I‘——: 2 d nz 2_/\. * (113)
wUTeE o Fe TR -

The amount of throughput of the bearing with turbulent flow has, likewise, a
minimum at G, = Gj. By equating No. 9.13 and No. 9.14 directly, the same re-
sult is obtained. 1In Diagram 7, equation No. 11.3 is illustrated in the form
of a curve. It can be seen, as a striking feature, that radius ry is appreci-
ably doser to rpj in turbulent flow than it is in laminar flow.

B) Bearing for load capacity/flow volume= maximum.

In the following discussions. again P, P;, = Py; = P;» Poy = p2i = Py,

as well as the radii ry; and r q are constant and given. The diagrams on p. 68
show G and K; as a function og the gas inlet radius Con. The inclusion of the
absolute load capacity K; in the discussions on optimization makes only sense

if the equivalent comparative value of Ky versus G; has been clarified. In addi-
tion to the frequent cases where Gr is to be kept as small as possible, there are
applications of aerostatic bearings where the amount of throughput is rather un-
important. In these cases, however, the bearing must have the highest possible
load capacity at increased gas consumption. Thus, if one arrives at a compari-
son between optimum load capacity and minimum throughput and if the criterion

Ko _ |
—é-;_ = MQX . ! (11.4)
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is selected for the determination of rj, an optimization can be performed in

a relatively simple way. If the equations No. 10.6, 10.7, 7.19 and 7.20 of
the isothermal laminar flow are introduced into formula No. 11.4, the follow-
ing result is obtained:

*r ’nzc +n‘cxa) My |
I 12.v2R\ [LY\(‘°

If the magnitudes which are kept constant are eliminated, the following
remains:

[(%JICM '(3 CKL] Ln Ln “ = Max.‘ ! (11.4b)

where Cp, and Cki are functions of the ratios r2a/ro’ ro/r2i and, respec-
tively, r2a . Ig/rp; . Toy. The maximum of this function could be obtained
by equating the partial differentiation with respect to r, to zero. Since,
however, this cannot be performed analytically, the function for various
ratios r, /r 9i Over r,/ro, was plotted graphically and the optimum values
obtained for the individual curves

Lo (52
Gt Yai (11.4c)

were recorded in Diagram 7. For the determination of the Cp values, a pres-

sure ratio py/p; = 0.20 which remains constant was assumed. Since the Cy
curves (cf. pp. 60 and 62) show similar courses for various pressure ratios,
it can be assumed that the present result depends on pressure to a limited
extent only.

11.2 Optimum geometry for a bearing with compensation space.

The annular compensation space which is the fundamental principle of
these studies serves for the uniform distribution of the gas prior to the
clearance flow and for increasing the load capacity. The feeding nozzles open
into this space. If the depth of the compensationspace s >> h is designed
much larger than the bearing clearance, Py is constant over the area of the
recess. Besides, the effective throttling length of the bearing clearance is
shortened by the compensating space in such a way that the throughput is in-
creased; on the other hand, it reduces also the friction in the bearing when
the shaft is rotating.

As far as the interrelationship of the limiting radii of the compensa-

tion space, ryj and ry, is concerned, a law similar to equation No. 11.2 has
been established:

(11.5
Via-Tvi = Ma-Vi )
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This selection was made in _
' such a way that, with isothermal -Q-:D
laminar flow which is presumed to s (‘—-J\
occur in the discussions below, — :
the two partial amounts éa and Gy : laa

are equal. . | . =
: _CJl G{Q' "'r | : en T

The following question

) v, syl
arises now: How large should 2237. »Maf //” ) iV}L '
the compensating space be in a . N é
bearing the limiting dimensions /{é% l i /Cja

!
of which are given, and which P z
pressure of the bearing gas is .z 8& e
required in order to reduce the '

total power input which is com- e

posed of the effect of the bear-

ing gas compressor Ny and of the /////////’—l;—__——"\\\\\\\
friction due to the rotation No

of the shaft, to a minimum, if

the load capacity K; has been - P T
established?

T

$45 . -

-~
S
(V)
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Let us suppose that in a bearing which can be loaded unilaterally
the following is given:

Tia 3 Tai 3 K1 p1/p3 y Ppos X 2 N 9Vh’jl ? Ywo

(11.5b)

and that the following should be determined:

Py

s P Ny + N = £( T /Tl ) (11.5¢)

and that the energy of the compressor of the bearing gas N1 be given

by:

where

Ny = 9o Haa Gr (11.6)

o 1s the adiabatic efficiency of the bearing gas compressor,

Hyq is the adiabatic delivery head of the compressor and éI is the through-
put volum of the bearing per second. Then the delivery head can be cal-

culated from

» -1

x-“'/, ] (11.7)

R = RT3 [(3)

It is presumed that the compressor aspirates from the surroundings of
the bearing and then furnishes a final pressure of Pp. The amount of
throughput G is determined with the aid of equations No. 7.19 and No. 7.20

tor the laminar isotherma

C;I = (;a *'C;i = 12 2 F}j}

bt

clearance flow.

3 pr - :) 1 1
Th' (pt-p (m_,faﬂn,—%)' e

In the following it is assumed that the aspiration temperature Ty of the
compressor is equal to the gas temperature of the clearance flow. If the

equations No.
result is:

11.7 and No. 11.8 are introduced into equation No. 11.6, the

3 [ZJRTN A x-1
o e ] e

or using the condition No. 11.5 and the resolution

Py _ Pz ¥
= PP (11.8b)
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the following is obtained:

o Ea e [ IR )

The ratio p;/p_ must be determined, in compensating spaces of different
size, from the“stipulation of a constant load capacity Kj. Considering
the equations No. 10.6.and 10.7, the absolute load capacity of the whole
bearing area 1is:

K, = Trpq[(n;— Y;i’) + ViaCua + Y:E.Cul] (11.10)

and, according to equation No. 11.5, the following applies:

K = TR ¥ {(;‘f) U%)L+ Cm]' E";(’l - Cm)} y (11.11)

the pressure ratio

P Kz
P Wfﬁﬂ{(%)luﬁ:) Cua.]—"—(’l Cu)} (11.12)

for a certain size of the compensation space can be obtained by itera-
tion: select pl/p2 and determine Cy, and C,; from the diagrams 5 and 6

(p. 60 and 62)
calculate pl/p2 according to equation No. 11.12.

If the assumed and the calculated presswure ratio pl/p2 are in good
agreement, Nj can be determined from equation No. 11.9.

The friction effect Ny of the bearing can be derived, if equation No.5.1
applies, from the equation No. 7.21. It is for s h:

Al

N, = Ma2 = zwvz Jr’dr + | ridrp anaa
' i

or, after integration

T Nt & 4 AN G
N, = _l_fh_a (y;m_y;o_ + Ve =1 ) . (11.13)

Considering equation No. 11.5, the following can be concluded:

- T (8 [y - (B ()1 - e @
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Since a general optimization according to the stipulation

O(N.a+N) _ 0 (11.14a)
(%3]
(ao
cannot be performed analytically, it is useful to form the sum of N1+N2

for the different sizes of the compensating space and to determine the
optimum graphically. For an actual case with the following values:

Lia = 0,175 W= 1.t
ry = 0,055 m n = 1, 9160 kp s/m*
Ky = 1579 kp h = 50 . m
"pa/pg= 0,80 N = 0,80 (11.14b)

D, = 1. lO» kp/m*

the effects Ny and N, were calculated as function of rj,/r1,, the r.p.m.
were determined and both represented in Diagram 8.

Result: (11.14c)
Tia /Taa b, /P,_ Pg /P,_ Na (m kP/S) No (m L*Y”/S}

' 0= 1000 L= 1750 1= 20C0
1,556 5,00 6,25 77,65 30,18 4,2 161,5
1,450 483 6.05 29,15 20,0k 78,2 16,5
10530 430 5,40 57,65 23,09 Ghyl 15,8
1,210 4,01 5,02 106,40 . 17,062 4332 19;)?
1,110 3,72 4,65 39,50 11,15 51,0 Y
1,000 3,43 4,30 ) 0,00 ¢,G0 0,0

Although a general conclusion referring to the most economical bearing as far
as the compensation space is concerned cannot be reached, it is, nevertheless,
evident from the example that, if the number of rotations is zero or small, a
bearing without compensating space requires, at constant load capacity, the
smallest power input. This can be explained the following way: If a compensa-
ting space is present, a lower pressure may suffice, but the volume of through-
put becomes appreciably larger on account of the reduced throttling in the
shortened bearing clearance. From this it can be concluded that the load capa-
city in bearings with a low number of rotations or large heights of the clear-
ance should not be obtained by large compensating spaces but rather by high
pressure of the bearing gas. If the machine works at very high r.p.m., the
effect of friction plays a larger role and, in this case, a larger compensating
space 1s justified.

11.3 Optimum height of the bearing clearance.

Another possibility of determining the smallest power input of a bearing
with given dimensions (including compensating space) and pressures can be de-
rived from the formula: a(N»\"' Nz)

dh

An optimum value for the bearing ciearaunce can be calculated this way.

= . (11.15)
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If the equations No. 11.9 and 11.13 are written in abbreviated form, one

obtains - 3
N1 = Ah (11.15a)
B
fVL = ‘7{ !

where "A" and "B" have the following weaning:

%-1

e

A= B e (B[R T - 1]

218 (11.15b)

' T h Q* 4 4 ¢ "
B - _%—(Wm“na + e - rz‘a)
and, from the following equation:

\ N, P —B— _ (11.15¢)
B(I\(/av: ) =F5W(Ah3+ h) 0

the optimum height of the clearance is obtained:
‘+ —

Noe = B (11.16)

ot 3A

For an example with the same data as compiled on p.71, the optimum height of
the clearance, hgpy, was calculated as function of the compensating space.
The following values resulted:

Tia /Taa P, /P,_ hopt

1,556 5,00 24,63.10°° m I

1,480 4 8% 24.,21.1C°¢ (11.16a)
1,330 4,39 2%,02.10°°¢ IT

1,210 4,01 20,90.1C°¢

1,110 3,72 17,04.10°¢

1,C00 3,43 0 111

——

I , I &——f I heOo JE
AN A A =

11.4 Power input for different gases.

i

In the following, the influence of different gases on the power input
required for the operation of an aerostatic thrust bearing is illustrated by
a fundamental comparison. In this comparison, one and the same bearing is
examined in different gases, but with constant axial thrust. The nozzle
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pressure ratio p,/p, = 0.80 is, likewise, constant with all gases. The total

theoretical power input is composed of N; and N,, where the compressor energy

N1 for adiabatic conditions is determined from equation No. 11.9 and the bear-
ing friction effect from equation No. 11.13. The examples with the values:

r. = 0,055 n h = 20.10° n
T« = 0,087 m D = Dy = 4,80.10" kp/m*
ra = 0,088 n O = Py = 1,00.10% (11.16b)
. = 0,133 m Da = 6,00.10"
Q= 1570 s m = 293 °X
Do =1

gives the following table with various gases:
1

n 1073 =
Gas 20 10%n -;Z—L-;e”%—) (%3) =4 N, N, N+N,
kpS/m" mkp/s mkpls  mkyp/s
Luit 1,40 1,85 1,860 0,670 27,5 106  133,5
N, 1,40 1,78 1,968 0,670 22,6 102  130,6  (11.160)
e 1,66 1,50 1,327 1,040  3C,C0 109 130,00
00, 1,50 1,50 2,0 0,510 32,0 &5 118,0
Sattdanpf 1,35 1,30 3,100 G,56C 37,6 74,5 112,1
Freon 11 1,12 1,08 8,322 0,219 39,5 62,5 102,0.
NH; 1,51 0,850 4,450 0,529 51,0 4.5 105,5
Ha 1,41 0,856 3,840 0,635 57,1 51,3 108,4
Air - nitrogen - helium - carbon dioxide - saturated steam - Freon 11 -

ammonia - hydrogen.

It can be concluded from this table that the power input for the com-
pressor of the bearing gas N; (or the total effect at = 0) depends,
practically, only on the viscosity of the gas. The smaller viscosity is,
the larger an amount excapes through the bearing clearance and the larger is
Ny. The influence of 2{ is only minor. The order of the gases examined
corresponds to the power input for J]_= 0.

If, however, the bearing friction which is generated by rotation is
also taken into consideration, the order is changed, since N, increases with
increasing viscosity. What importance the friction effect has compared to
the compressor effect does not only depend on 7] but also on the size of the
compensating space and the angular velocity L. 1In the example considered
here, the order of the gases with respect to minimum total power input is
almost reversed.

11.5 Optimum nozzle pressure ratio in double-acting bearings.

The studies of optimum conditions made so far referred to bearings
which are supplied only unilaterally with bearing gas and, therefore, can
take up the required axial thrust in only one direction.
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It happens, however, frequently

in practice that the thrust of machines . \<:b/§222225/
which are subject to non-stationary

conditions (starting and arresting = \\\\

period, fluctuating level of pressure, }\,
pumps, compressors, etc.) works tem- —t= Pg

DGy
porarily in both directions, The '\<>\»\ //”/

N

-

w
4
I

//,
Z

following discussions are based on a PSP

bilateral bearing of entirely symmetri- >
cal design which has, at the same 9 . i - -
height of the clearance, the same ! Ksm
load capacity in both directions., A he b é
bearing designed according to this N

principle has the disadvantage of FQQSTQS , 45_ \<>b

a high gas consumption. On the - NN Gn.<\l— 1
side I of the bearing whicHh is ‘\Q far N
loaded by ngs’ a small clearance P

h; is formed, while, on the un- ' \\\\\ 67 Il?/.\\\\
loaded side, a much larger clear- \\\\ /5 ! 14:5\

ance, hyy in correspondence with
the total axial clearance, is pre-~
sent. Since the unloaded side must be continuously prepared for a possible
take-up of thrust, an unused quantity of gas Gy escapes here steadily.

Optimation consist here in the following: To find the nozzle pressure
ratio pB/p11 or, respectively, the required pressure Pg at which the compres-
sor output Nl for a given bearing pressure ratio PEI/PZ becomes a minimum for
the preparation of the total bearing gas.

In this connection, the following abbreviations are used: é is the
amount of throughput per second through the carrying clearance h;y, ~(Kg/sec);
cII is the amount of throughput per second through the non-carrying clearance
hyy (kg/sec); pg1 is the highest pressure in the carrying clearance hy

(kp/mz), which is determined by the magnitude of the axial thrust; p1II = pos
since hyp )) h., is the counter-pressure of the nozzles on the non-carrying
sifle of the bearlng, approximately equal to the pressure surrounding the bear-
ing, py (kp/m 2, Pg is the pressure of the bearing gas in front of the inlet
nozzles = final pressure of the bearing gas compressor (kp/mz); m is the
number of stages of the compressor; H,4q is the adiabatic delivery head of a
compressor stage (m).

For the derivation, the following values are considered as given: Kges:
K e
1 K Py Pyp, Gro
Assumptions: The nozzles are designed as cylindrical throttles or
apertures. The outflow from the nozzles is considered as adiabatic change of
state. On the non-carrying side of the bearing, the outflow from the nozzles
is critical, provided that

P 2 »
X~
_5 > (_M) 1 (11.164)
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In a similar way .as in equation No. 11.6, the compressor output, free of
' losses, for m stages becomes:
N.. = (Grr6x)m Had - 117
im

The amount of throughput, in adiabatic change of state, through cylindrical
nozzles or aperatures for the carrying bearing clearance is:

Gr=mFops }/RLT%%)[ ';z)“ (_%) ] (11.18)

and, ‘considering the assumption mentioned above, for the non-carrying clear-
ance:

IN

> : +1
Gy = pFope | gl ()7 - )]

The partial delivery head of the m-stage compressor is, with adiabatic com-

pA

pression:
R4, -
T2 }‘ Psywe _ 41 (11.20)
H R | J ’
L\ Po
1

where (pB )m is the ratio of the stage pressures.

p2

If equations No. 11.18, No. 11.19 and No. 11.20 are introduced into equation
No. 11.17, the following result is obtained:

:
‘ ?

[("‘”) = (“2:’“).&—4} Pﬁ%~’l . (11.21
vl R e

If the following condition is met:

e _ P Px (11.21a)
e Pr P

the power input N;, 1s now only a function of the desired pressure ratio
Pr1/pPg and the optimization
a N1m

9:)

=0 (11.22)
can be performed. For m = 1 and f = 1.40 the minimum effects at various

pressure ratios Pr1 /p2 by variation of RII/pB were determined by graphical
plotting. The result is represented in Diagram 9.
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Determination of the optimum pB/pdl and pp:

From the given load capacity K; the pressure ratio piu/p2 is determined .
(For example, py;/p, = 6.00). From Diagram 9 it can be seen that, for m = 1,
PR/P11 equals 1.316. This allows the design of the required nozzle area. The
corresponding pressure pp is in this case:

Ps
Por (11.22a)

P = . —p,
fr

For example, pg = 7.90 p,.

12. Properties and design of the throttle elements.

In order to impart to the bearing the property of increasing its load
capacity with decreasing height of the clearance, the bearing gas must be ad-
mitted to the clearance by means of throttle elements. (cf. the explanations
on pp. 10-14 ). These throttle elements may consist of individual nozzles
which open directly into the bearing clearance or into a compensating space,
or gap-shaped throttles (e. g. annular gap) or inserts of porous material.

If, in a bearing of geometrically fixed magnitudes, also hI and K; are
given, then also p is determined. Since the amount of throughput through
the bearing clearance must be equal to the quantity of feeding gas, éclearance =
Gthrottle, the operating point P; of the bearing is the intersection of the
characteristic of the throttle elements and the characteristic of the bearing

clearance. ‘

A G Charakteristik
7N des Lagerspaltes .

= <

~|Pc / V4 \
f ,
| Kennlinie AN

S d. Drossel P

/ /

/ rd P

| = P
8

(top) characteristic of the bearing clearance -
(bottom) characteristic of the throttle

—— - - ——— - —————— - —— "
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In bilateral thrust bearings, the curve hy indicates the carrying,
the characteristic h;; the non-carrying bearing clearance.

The characteristics of the throttle elements, which will be investi-
gated more in detail later for various cases, depend, above all, on the kind
of throttles and on their effective cross section area. The characteristic
of the bearing clearance is mainly determined by the height of the clearance,
geometry of the bearing, and the viscosity of the gas (in laminar flow), and,
respectively, by the friction conditions in the clearance (in turbulent flow).

The characteristic of the bearing clearance is determined for the

radial isothermal laminar flow. The amount of throughput through the bearing
clearance is given by the equations No. 7.19 and 7.20:

T_h? (- P ( d d )
1

Cr_ = Ga. + Gi = - . Ve T Vi (12.0a)
12 7 RT Lﬂ Yo Ln T
Thus the characteristic is:
G Py
2 - al-=]"~b (12.1)
Ps A (PS)
The constants are here:
a = th%( T 4r>
129 RT T Jac (12.1a)
Z Ln Y‘«a ln V'z'.
and
P\t 12.1b
b= alp) - (1210

The equation No. 12.1 is here a parabola of second order which is
shifted downwards from the origin in the direction of the ordinate by the
magnitude b.

12.1 Short cylindrical nozzles and apertures (1 s’ d).

The figures at right show l
satisfactory designs of nozzle 7/ :
(left) and aperture, 1 d (right). ;Z
The aperture, though prepared j
with somewhat greater efforts, //
has, however, no fundamental
advantages over the short
cylindrical nozzle.

i
ores

D

7

f

13

i
L
T

Moz ie. | Tpen
d Blcnde L& G

I




-80-
The area F of the required throttle cross section of the nozzles
can be determined for a bearing with given values py;, Py and CI from the ‘

nozzle characteristic which, assuming an adiabatic change of state, of the
flow, gives the following result:

2 R+1

. . N 292 [&)a_(_&)TJ (12.2)

GI. = Gq + Gi (“--‘F.b P.B RTs (&_1) (RB Pg ‘
The effective throttle area Fj depends not only on the diameter of the bore-
holes of the nozzles, but also on the arrangement of the nozzles in the bear-
ing. The coefficient is a flow factor depending on the shape of the
nozzles (sharp or rounded-off edges) and on the Renumber of the nozzle flow.
Another way of writing equation No. 12.2 is

Z%% = f(%‘ae\R) ‘ (12.2a)

It is represented in Diagram 10 for some frequently used gases, assuming ideal
gas properties. At a given effective throttle area Fp and constant pressure
pp, the amount of throughput G increases with decreasing pressure pj until the
value

.

2 (12.2b)
Pa _ (f_jé"—"_) »n-1
Py /krit R+ 1
is attained where, since veldcity of sound has been reached in the throttle
cross section, the amount of discharge reaches a constant value which does ‘

no longer change with further decrease of P;-

A) Opening of nozzles into a compensating space.

1f a uniform radial flow shall occur in the bearing, the individual
nozzles which are evenly distributed along the circumference of the diameter
2rg must open into a compensating channel which is recessed in a bearing
disc. This compensating space is preferably designed as continuous annular
channel.

In order to guarantee as
great a stability as possible in

the bearing relative to self- " Ma -j |
induced vibrations (ef. Chapter \ e 1 ‘ <
P — Vit SOOI MNNNNN T

16), the volume of the compensa- {

ting space should be small. The 2;;;// b,
lower 1limit for the cross section S

of the compensating space is 1//
established by the requirement

that the highest velocity of the

gas in the channel be not greater

than the velocity at the inlet
into the bearing clearance.
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In the following, b is the width
of the compensating channel; s is the
depth of the compensating channel; h
is the height of the clearance
at normal operating conditions; and
n the numbers of nozzles.

I

If it is assumed that the
entry velocities into the outer and
inner bearing clearance are approxi-
mately equal and if the width of
the channel,

2r

r

o T1a 1i
is small, the requirement stated above
is met by equating the cross section of the
channel and the cross sections at the entry into the bearing clearance.
Thus the following is obtained:

+

— 2V T h[
b.s n ' (12.3)

It can be concluded from equation No. 12.3 that an increase in the number of
nozzles has the advantage of a reduction of the channel cross section and
thus of an improvement of the stability of the bearing.

The effective throttling area F_ of nozzles or apertures which open
into an compensating space can be figured to be the whole amount of the
cross section.

2
F,=n 4T (12.4)
° 4
B. Opening of the nozzles directly into the bearing clearance.

(Nozzles with variable throttle cross section, depending on the clearance).

If the nozzles are arranged in such
a way that their cylindrical borehole opens 7 ’
directly into the clearance, the effective
throttle area is not equal to the cross . h d.
section of the nozzle, a2 /4, but is d «
L
L

formed by the edge of the nozzle and the
height of the clearance. When the follow- /// /4;5;
ing applies Z =\

N ANN NNV ¥

drh <_(%_T_[ (12.4a)
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the effective throttle area 1is
F‘; - Y\ AT h (12.9)

For reasons of design, dmin':J10 h. For nozzles which open directly into

the bearing clearance, the characteristic
S - T(h f‘—) (12.5a)
\05 | pb

depends also on the height of ithe clearance. The consequence is that, upon
reduction of the clearance by an additional load on the bearing, the load
capacity can only be raised insignificantly on account of the stronger
throttling effect. 1In order to impart good load capacity to such a bearing

in the region of low clearance widths, the nozzle must have an appropriately
larger borehole diameter d on account of its small effective throttling area.
In such a case, however, the amount of throughput would increase in an undesir-
able degree if the clearance were enlarged by reducing the load of the bearing.

C. Nozzles with boreholes on the side of the clearance.

In order to avoid the danger of self-induced vibrations (cf. Chapter
16) which appear when a compensating space ’

is present, and the disadvantages mentioned ' ~10d F\t
sub B), individual nozzles with a bore- : P\\
hole at the side of the clearance were Qid . Rt:

successfully installed in various experi-
mental devices and machines. The largest
diameter D of the borehole is, in this
case, selected in such a way that, for
the smallest height of the clearance
h in occuring during operation, the
requirement

d*m

= hmin
m D1 (12.6) T C/>c<>c</c(/;/ /é/;//C/}C/>C

is fulfilled. The effective throttling
area Fp is, for h 2 .., identical with
the cross section area o% the nozzle. Thus equation No. 12.4 applies also here.

The effect of the borehole on the side of the clearance in cylindrical
nozzles, compared to nozzles which open directly into the bearing clearance,
on the load capacity and amount of throughput was ascertained clearly by an
experiment. Diagram 27 shows measurements of the load capacity Kgeg and the
amount of throughput éI in a bearing which can be loaded unilaterally, with-
out compensating space. In the first experiment, the four cylindrical nozzles
opened directly into the bearing clearance, whereas, in the second test, the
nozzles had a borehole on the side of the clearance. It was found that, with
constant nozzle cross sections, the load capacity characteristic K es = £(h)
of the bearing with counterbored nozzles was shifted into a region of greater
clearance heights while the course of the curve was similar. The load capa-
city at equal heights of the clearance is markedly greater than in a bearing
with nozzles without counterbore. The amounts of throughput show a similar
behaviour. The bearing with counterbored nozzles, has, the clearance being
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equal, (at least in the region of small h) an increased gas comsumption
corresponding to the larger effective throttling area,

(:;ﬂng@s~ ~ D — .%_O. -—. 285
- = — = ; = . (12.5b)
G g, « (=5 )

(anges) with borehole
(nicht anges) without borehole.

. The values obtained in the experiments verify this ratio satisfac-
torily, at least for small heights of the clearance.

In a synopsis of the three cases A), B) and C), let me add a compari-
son of the dependence of the effective throttle area Fn on the bearing
clearance h. :

The design according to C) is quite similar to the case A), whereas
the direct opening of cylindrical nozzles into the clearance according to B)
is unfavorable.
kY
‘. -FD

______4_/\.)_ R —
N =
/ -
/
f#/"C:) _,<:;
/ 7 B)
j -
/
| . h
|~ = G
hn'm h=l—}'
12.2 Capillary nozzles 1 >> d.
The friction of the gas entering ///1,

through a capillary and the ;2222;7\ '}»///
resulting great reduction of the pres- /{;2;22;>‘r
sure p; cause an appreciably flatter % /ﬁ.:
pattern of the throttle characteristic, j;;;/

i.e. below the nozzle characteristic, <2222:~< ?yé/’
”..
/5'///i.ﬂ/

compared to the short nozzle, at an f;;;
X , i

equal effective throttle area FD. The § i 41
consequence is that, at equal throttl- 7 N
ing area and equal height of the clear- YﬁbN <§§§>\<:<QQ>Q§>Q§§<:\
ance, the load capacity of the bearing 5 G

with short cylindrical nozzles is

markedly higher than that of the bear-
ing with capillary nozzles.

E N Short nozzle

On account of the flat throttle
characteristie, the use of capillary
nozzles is also disadvantageous as far |
as stability at self-induced vibrations — 'a 4
is concerned (cf. Chapter 16).
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12.3 Venturi nozzles.

In most aerostatic bearings, the inlet nozzles were designed as cylin- .
drical boreholes. A disadvantage of these nozzles is, however, that,at a
given feeding pressure pp, the amount of flow decreases comparatively
fast, if the counter-pressure p. increases above the critical value, p
where the velocity in the nozzle is still that of sound. 1In order to ogtaln
a high load capacity, it is desirable to select the inlet pressure Py of the
bearing clearance which corresponds to the counterpressure of the nozzle as
close as possible to the available feeding pressure. At a given bearing
clearance, the amount of flow is also given and, on account of the
decrease of the amount at increasing counterpressure P1, it is necessary to
select comparatively large feeding nozzle cross sections. This involves not
only the disadvantage that a large amount of gas escapes in bilaterally load-
able and symmetrically built thrust bearings in the wide clearance on the non-
carrying side, but it interferes also with the rigidity and the stability of
the bearing. 1In order to avoid these disadvantages, venturi nozzles for the
admission of gas were installed in one of the experimental devices. (Figs. 1
and 2). 1In contrast to the cylindrical nozzle with the narrowest cross sec-
tion area FDa’ the counterpressure P in the venturi nozzle with an equal
narrowest cross section can be increased considerably without an appreciable
reduction of the quantity on account of the subsequent diffuser. The use of
venturi nozzles is, of course, only justified if they open into a compensa-
ting channel or if the diffuser is counterbored at the side of the clearance
in such a way that the effective throttling area is formed by the narrowest
nozzle cross section and the effect of the diffuser can be fully exploited.

6-10°
| yd 2

1A
NN da NN\N
\\ B

The following diagram illustrated schematically a comparison of the throttle
characteristics (volumes of throughput as a function of the nozzle pressure
ratio pl/pB) for regular nozzles and venturi nozzles.
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Z\
7~z
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The meaning of the curves is the following: Curve a) is the character-
istic of venturi nozzles in a flow involving a loss ( = 0.65; narrowest
cross section area FDa)' Curve b) is the characteristic for cylindrical
nozzles (with a larger narrowest cross section area be). Curve c) is the
characteristic of cylindrical nozzles without diffuser (narrowest cross section
area Fp ). Curve d) is the characteristic of the carrying bearing clearance

(cf. p. 78). : . ‘
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It can be concluded from this comparison that the operating point P
cannot be reached by cylindrical nozzles (charactertistic '"c¢) of the same
cross section Fh, as the venturi nozzles. Using cylindrical nozzles of larger
cross section area FDb (characteristic "b") the operating point could be
reached, but the volume of throughput increases considerably with an enlarge-
ment of the clearance by reducing the load of the bearing. 1In symmetrically
designed bearings with bilateral load capacity an amount which is larger by

é}‘sab than in the case of ventuyri nozzles with the cross section F a would

continuously escape on the non-carrying side in the presence of nozzles with
the cross section area FDb'

LG

Pa

s+ . . . emn b e e s -

Determination of the characteristic for venturi nozzles.

The velocity occurring in the smallest cross section of the venturi
nozzle is retarded again in the

adjoining diffuser. It is assumed
in the calculation that the change /QC//4/9//C/C/}f/ﬁ/§fkf/ﬂ/}{}”
of state in the narrowed part of /// ’
the nozzle and thus also the course

of velocity is adiabatic and free % R . . L
of losses. Otherwise, the calcula- 1 NT
tion would be more complicated. In
a nozzle which is not loss-free and
widens subsequently, the maximum
velocity is not in the narrowest
cross section. At least in Laval
nozzles with supersonic flow, sound
velocity appears only after the ¢
narrowest cross section. max

1.
3
A

3

¢ Velocity

P
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AP P P
The throttling characteris- " ;
tic of the venturi nozzle should -~ T
have an almost rectangular course - // !,'
with a flow free of losses and a 7 ‘P-n
very small cross section ratio ~ B
F 2 P
- (k) T
1 (12.6a)

(cf. the curve marked "with diffuser ’ql) = 1" in the sketch which follows).

The two curves without and with diffuser show the pressure recovery in
the loss-less diffuser p;' - P . At an efficiency factor of the diffuser of
M d < 1, the pressure recovery would be only'q D(Pl' - pm)o Thus one can
obtain, without difficulties, the whole course of pressure for h { 1 from
the characteristic of nozzles without diffuser, where the compressibility has
already been taken into consideration.

l(; ')\
iy "4‘Pw\
1 P o

Ps

i‘ —_ \ ’ No?zle with VZD.—.4
i ~ ©  diffuser AL
|

/< Nozzle with . YZD<4

L

, \ ~diffuser
i) 001——]5‘?3) \ Nozzle without
' 1 i diffuser
P
Pa
jé_._
Ps

In an experimental example (cf. diagram 11) with 4 venturi nozzles
with an aperture angle of 10°, an area ratio ﬁ = 0.14°% ({ ?30.021),
and an diffuser length of 7.5 mm, an efficiency factor of = 0.65 was
measured. This value appears to be correct, considering the large widening
angle, the poor rounding-off of the narrowest part of the nozzle and the
high Mach numbers, compared to the results measured in reference (XIII).
The outflow coefficient was determined from the quotient of maximum
volume of throughput, calculated theoretically from the nozzle area present,
by the largest measured throughput volume.

) Gmax gémessen = 0196 '
!\‘L G max gérechnet m. o (12.6b) (gemessen) measured -

(gerechnet) calculated.
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The efficiency factor of the diffuser is defined by:

P1 - pm
YZD p1‘ - P"‘ ‘
where Py is the pressure actually measured in the back of the nozzles: Pn is

the pressure in the narrowest cross section; P,' is the pressure in the back
of the venturi nozzles in a loss-free flow.

(12.6¢)

«
For P ‘K1, pl";Jp and thus the pressure ratio is:

B’
Pa
P ~ fa '
- 12.7
On PR, (12.7)

The throttle characteristic of the venturi nozzle for a very large area ratio
can be obtained from the characteristic of nozzles without widening, equation
No. 12.2, by introduction of the formula No. 12.7 into the nozzle pressure
ratio of equation No. 12.2. The result is:

6 tex et fon)w |
- en Rl (BT e

The general conclusion is: Bearings equipped with venturi nozzles afford
either, at a given amount of throughput, a higher load capacity or, at a
given load capacity, a saving of consumed bearing gas. 1In diagram 12,
measurements of the pressure P, as a function of the height of the bearing
clearance h in the same bearing are compared for venturi nozzles and cylin-
drical nozzles of identical narrowest cross section. The following can be
seen: In those regions where the pressure ratio pl/pB is higher than the
critical, the pressure Py is higher in the venturi nozzles, at equal height
of the clearance, i.e. the load capacity is improved; with large bearing
clearances, however, where the flow through the venturi nozzles is over-
critical, the load capacity is lower than in a bearing with short cylindri-
cal nozzles without expansion on account of higher losses by supersonic
flow, and formations of shocks and eddies. Another advantage of the
venturi nozzles can, likewise, be seen in Diagram 12. 1In the region which
is most important for bearings, i.e. at heights of the clearance which are
neither too small nor too high, the curve p; = £(h) runs steeper than that
in bearings with regular cylindrical nozzles.

This results in a greater rigidity of the bearing, i.e. the height of the
clearance does not change as much with increase or decrease of the load as in
the bearing with regular nozzles. The higher rigidity has an advantageous
effect on the stability connected with self-induced vibrations (cf. Chapter 16).

12.4 Throttle elements with variable pressure-dependent cross section.

Still better characteristics than those of regular eylindrical and
venturi nozzles can be obtained by throttle elements where the effective
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certain difficulties.

. ' . SN
throttling area FD increases with increasing } \\ ?
nozzle pressure ratio p;/p_. The design and 777/
construction of such throt%les involves, however, gis;

N Py i
Pa-fr=9ross o ® Kl-e,'r“ i
tarat <

In reference (XIV), the use of individual
nozzles of elastic raw material (plasties, sili-
cone rubber) is described where the cross section
area changes as a function of the difference

|
between the feeding pressure Py and the pressure -<<QS§§> Pa
in the back of the nozzle p.. "In the region of \\\\ }
large nozzle pressure ratios P,/pg the elastic ::>\ i
material is compressed in such a way that a con- 4

)

7

striction of the cross section is produced. 1If, N P°"T?;L" ross
on the other hand, p;/py is small, no deforma- Pa-ti= klen Fo = Q Pl
tion of the nozzle occurs and the whole cross oM b

section initially provided is available for the
flow through it.

Two more designs of nozzles with variable, pressure-dependent cross
section are sketched in the drawings on the right side. 1In the first pic-
ture, a needle body N is supported by a spiral spring Fe. The greater the
difference of pressures Pp = Py is, the smaller is the effective throitling
area Fp between needle body and seat i.e. at a small nozzle pressure ratio
less bearing gas escapes through the nozzle. In the second figure, a leaf
spring fulfills this task. At an increasing pressure difference Pp - Py,

the spring is bent to a greater extent, reducing, at the same time, the
effective throttle cross section.

An exact analytical determination of P

the characteristic for such throttling elements \<§
is not feasible in most cases. It is, there- \\iiji '1:55\\\:<EE\L
Fe i B

fore, advantageous to obtain the throttle
characteristic by experimental methods. The
design of a bearing or the determination of

the operating point, and the entire course \\\\u \\\ ol
N AN
L

ol"PB"_

.P'

of the load capacity over the height of the

clearance h, respectively, can than be per- J
formed readily. The advantages of such

throttling elements appear immediately by

studying the diagram drawn below. The

volume of throughput of the nozzles de-

scribed above either remain constant over /’ﬂ

p1/pB or even increase somewhat (curve e), EE;;/’ i r’ ///
while the throttle characteristic for a :

cylindrical nozzle (curve f) with constant

cross section drops sharply in the region of ////// W

large pl/p . The characteristic of the bear- F%

ing clearance (curve g) intersects the throttle ////
characteristic in the operating point P of the T //:

bearing.
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VS

R _

U:.e ® fl%".\] /

A bearing with regular nozzles
(FD = const) consumes appreciably more
gas at increasing clearance, on account
of reduction of the load, than a bearing
with the throttle elements described
above. As a consequence, the rigidity,
i.e. the increase of the load capacity
Kges at a certain decrease of the bear-
ing clearance h, is considerably greater
in the latter case. 1In this comparison,
the bearing geometry, the operating point
P and the feeding pressure pp are assumed
to be constant.

12.5 Annular inlet clearance.

The compensating channel for equalizing the gas (cf. page 67)
can be eliminated when the bearing gas is fed through a ring-shaped inlet
clearance which extends over the whole circumference of the diameter 2 r,-

The sketch at right suggests a design for
such a feeding through an annular clear-
ance. Such bearings without compensating
space are stable as far as self~induced
Vibrations are concerned. (cf. Chapter
16). The boundary walls of the throttle
clearance may consist either of parallel
planes (corresponding to the cylindrical
nozzle) or of widening planes (correspon-
ding to the venturi nozzle). Since the
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required throttle cross section area F

is very small compared to the area of the
bearing - in most cases F;/F, = 5000 :
7000 - and the circumference 2ry JU  is
comparatively long, the width b of the
annular clearance is of the same order of
magnitude as the carrying bearing clear-
ance. The precise adjustment of such a
fine clearance which remains uniform over
the entire circumference involves difficul-
ties in most cases. Besides, special con-
structions such as composite bearing discs
are required which can provoke a distor- 142
tion of the bearing surface.

L

NN

The throttle characteristic of the
annular inlet clearance with parallel
walls is identical with the nozzle characteristic (equation No. 12.2), whereas
the characteristic for the venturi annular clearance can be calculated from
equation No. 12.8,

12.6 Gas feed through porous inserts.

An intrinsically different way of feeding gas into the bearing clearance
consists in introducing the gas through individual cylindrical or annular inserts
which are arranged in the fixed bearing disc and are made of porous material.

The properties and possibilities of use of a porous metal (bronze, stainless
steel) sintered together from minute balls is described in reference (XV). The
distribution of the gas can be done in such
a way that a radial flow occurs over the
entire bearing, whereby the compensating
space which can provoke self-induced vibra-
tions is eliminated. 1In certain cases, an
increase of load capacity or a reduction of
the volume of throughput can be achieved in
bearings with feeding elements of porous
surfaces, compared to a bearing with conven-

P,
tional throttle elements. The throttle §>\ ]f
N\

characteristic of a porous material is simi- \\\\ f \i V .
INN

lar to that of a capillary nozzle (cf. p. 83)
and depends above all on the porosity and the
thickness of the material.

13. Non-radial clearance flow,

In order to avoid the danger of the appearance of self-induced vibra-
tions, (cf. Chapter 16) it is advisable to allow the inlet nozzles to open
directly into the bearing clearance without increase of the clearance volume
(annular or compensating spaces). Thus each inlet nozzle must feed a certain
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sector of the bearing area; the clearance flow is, therefore, no longer
uniform and radial to the axis of the bearing. Since only local pressure
peaks form around the nozzles, relative to their number, the load capacity
is reduced compared to a bearing with an annular channel.

13.1 Potential flow.

In the following, the mathematical interrelationships will be studied
and compared which apply to the incompressible and the compressible isothermal
flow with any distribution whatsoever in narrow clearances. In this connec-
tion, it is assumed that the influence of inertia of the flowing medium is
negligible in comparison with that of friction. This prerequisite is not
completely applicable, however, to the immediate vicinity of the inlet nozzle,
since the influence of acceleration outweighs that of friction there. The
following studies are performed in cylindrical coordinates. The symbols have
the following meanings:

r = radius; ? = angle of the coordinates; Gr, vy = the
radial velocity or tangential velocity, respectively, averaged over the
height of the clearance; @ = density of the flowing medium; p = abso-
lute pressure; ¢ = potential function; q} = flow function; C; -Cy =

constants calculated from the boundary conditions.
Incompressible clearance flow Compressible clearance flow

Formulation from equation No. 7.6

v = — h2p

vV, = 2y Br (13.1)
o . P
Ve T2y oy (13.2)
Continuity
¥V Ve OV AVe) . 9V, . (W,
oVr Ve OV _ r oVe) (13.2a)
or T *Tiop T 0 ar T Trey =0
Density function
P (13.2b)
¢ = konst § = gRT




94

By introduction of the equations No. 13.1 and No. 13.2 into the con-
tinuity equation, the following is obtained if the density function is taken

into consideration:

Incompressible clearance flow

Compressible clea

J2p o, e, 2P 2ps7)  p ap , 3p
AP=3r * ok T op m0 | Tar tEaEt (

p=Ci9 +Co

Correlation

rop

Ff.n (:3(p + C& ;

rance flow

2p

rop) = 0 (13.2¢)

(13.3)
Potential equation
) ¢ I
it yor t et = O (13.4)
Solution of the potential equation
H .
Ep(?')“ ¢1(r.e f)= priy (13.4a)
Velocity components Flow density components
o .09 _ 2y g - 2¢ _ Ry
reor T rog PVr = 2r = raoy s
7. .20 __ 2y v, =22 . 2% T
¢ = Yop =" r PVe =rap =" or
Field of flow
¢ = const potentials lines or isobars, respectively

const

0

This

leads to the following conclusion:

flow lines

Every laminar flow in narrow

clearances can be considered as potential flow if the influence of accelera-
tion is disregarded, and the potential lines are assumed to be isobars, both

in incompressible and

form an orthogonal network.
pressible flow is only the correlation between p, v,

in compressible media. The flow lines an
The difference between incompressi
and

d the isobars
e and com-
Whereas,

in incompressible flow, the pressure is a linear function of the potential
value, this relationship is expressed by a quadratic function in compressible

flow.
by differentiation of

the potential function.

An analogous connection between velocity and flow density is obtained
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13.2 ZLoad capacity.

If the boundary values p, and p_ are given and the magnitudes of t¢

and 4) are determined from the befring geometry, the constants C4 and &
can be ca%culated from equation No. 13.3; the result is:
p:~ R (13.5)

CJ: <P4—¢1-
CH=P“).- ¢4

From this the pressure distribution in the clearance is found to be:

(13.6)

2 V P, ' ‘p* (q) ¢4 (13.7)

If equation No.13.7 is introduced into the integral for the load capacity,
equation No. 10.3, the following result is obtained:

,UVR cp ¢4 (¢’ d)..) rdr.dy . «as.e

(%)

13.3 Awmount of filow.

The volume flowing between two flow lines very close to each other is:
h(V,..T.d)O - Ve df‘) (13.8a)

The corresponding weight/second is, if the gas equation No.7.9 is used:

dG = %(VV.P.Y‘-C{?— Vy-P- dr) ¢ (13.8b)

If the velocity components are eliminated by means of the equation No. 13.1
and No. 13.2 the consequence is as follows:

d6 = - 12»2RT(par"d3’ pﬁ% ) (13.9)

The partial differentiations of equation No. 13.3 with respect to r and
respectively, have the following results

2P’ay\ C.3 and ZPr,a? Ca F,a—-? ) (13.9a)
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Introduction into equation No. 13.9 yields:

‘- WCs (29 20
d6 = =g 73?%‘(7“" rdy - 7y dr) asew

Integration affords the amount of’gas escaping along a potential line:

’ b (¥ ﬁ.
. 3 :‘ : Q¢ — .22_ .
G = W (e -¥) [ 2% rdy f dr] . (13.10)
P 1)

- 24 ? RT (¢1"' ¢1) r‘f‘)?

In a bearing which is fed by individual
nozzles which open directly into the
clearance, the volume of

be easily determined in another way if the
counter-pressure p; in back of the nozzles
is known. On account of the small heights
of the clearance and the relatively much h ‘ L

larger nozzle diameters, the area formed > /

by the boundary of the nozzle and the } ’4;6/2/;<>C<;§1/<>C/3<}%/C/C/
height of clearance should be considered

as site of throttling, rather than the nozzle cross section. (cf. Chapter
12.1B). For small nozzle cross sections, in comparison with the bearing area,
the potential lines in the immediate vicinity, of the nozzle are circles, and
the nozzle orifice itself is potential line ¢1 corresponding to p;. There-
fore, the pressure gradient next to the nozzle orifice is uniform, and the
same amount of gas per unit of boundary flows into the clearance over the
whole circumference. The amount of gas flowing through a nozzle can, there-
fore, be calculated in a similar way as equation No. 12.2, from:

Ps

d

o

2 w44

——

2o~ marhip| @28 (- (B) 7 1. o

where pp is the absolute pressure in front of the nozzle; p, is the absolute
pressure in back of the nozzle; h is the height of the clearance; M is

the outflow coefficient; d is the diameter of the nozzle; Z}(SD is the
weight of throughput per second through a nozzle.
1
R "

In a bearing where the drawing at the
right represents a sector, a summation of
AN Gp had to be done according to separate
counter-pressures py. In the following
equation,nis the number of the nozzle groups.

G=n [AGBLP4‘)+ AG(P«')+ AG(P«")] (13.11a)
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13.4 Application of the potential theory.

A) Analytical method.

A complete integration of the load capacity of the bearing and the
amount of throughput can only be performed for
simple flow patterns. For example, in the case
of radial source flow from one single nozzle in
the center of a circular thrust bearing, where
the following applies:

g (2) ~ ln (r_ei?) = Py (15

the potential function and the flow function are given by

¢=Ilnr , y-= y - (13.11¢)

With the boundary conditions

¢ = 9 ¢ = ¢ (13.114d)

P = D4 . D = Pa

r = I‘m_ r = rla
the already known equations No. 10.4 and No. 7.19 which can be solved, are
obtained for the load capacity and the amount of throughput, respectively.

B) Numerical investigation of bearings with individual nozzles uni-
formly distributed on the circumference 2 ry.

The symbols used have the following meaning: r, is the outside radius of
the bearing; r, is the inside radius of the bearing; Ty is the radius of
the bearing, on the circumference of which the nozzles are arranged: n is
the number of nozzles on the circumference 2ro ®; d is the diameter of the
nozzle, or the largest diameter of the counterbore of the nozzle (cf. Chap-
ter 12.1.C); k is the modulus of the elliptic functions; K is the half
period in direction of the circumference; K' is the half period in radial

direction; ¢H is the potential value at the nozzle boundary; ¢2 are the
potential values at the boundaries of the bearing; V is the adjustment factor.

The mathematical formulation of the problem can'be done by a ray-1like
arrangement of alternate sources and sinks at a specified distance, originating
from a center. The number of the rays must correspond to the number of nozzles
distributed over the circumference. Thus two adjoining boundary potential lines
which contain n sources and form circles, surround a bearing with annular
support surface.
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ne=h + Source
- Trough
Boundary
potential lines
+ -

Boundary
flow lines

As can be seen in the drawing above, a boundary flow line runs from
the source 1 to the trough 4 across two points 2 and 3 where the flow line
has to change its angle suddenly by 90° in the same direction in each case.
This fact suggests .that a flow field with two periods is involved, where
the period in radial direction is given by the alternate arrangement of
sources and troughs; whereas the period in the direction of circumference
is given by the continuously recurrent image which is formed by reflection
by the walls which are impermeable to the flow (connecting lines 2 -3, 2' - 3').

For greater clarity, the most essential features of fields with two
periods will be pointed out briefly. If z, T, u, W, ; are different
planes between which conformal representations are performed, it can be con-
cluded according to reference (XXIV) that the upper half-plane of the T -
plane is transferred into the interior of a rectangle of the z - plane by the
transformation

(13.11e)

¢ dt
z = !\/(4 “T)1 - KTy

where the term on the right side represents an elliptical integral of first
kind.
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By the simplifcation, 'f = sin ﬁ, the integral is transformed into:

j (13.11£)
Vﬂ-— k sin* W

The inversion function of this elliptical integral, i.e. the corresponding
elliptical function of first kind reads

u = am ( Z, k ) (amplitudinis 2 ) . (13.11g)
This function which was introduced and calculated by Jacobi represent s a
transformation which transfers the interior of a rectangle of the 4 - plane

onto a half-plane of the z - plane. It can be concluded, furthermore, from
reference (XXIV) that the function "sinus amplitudinis z"

W = sin am(i(k)n sn (Z k)

=[2—(4+k)

represents a simple source flow of the W - plane into the two-period (source
and sink) flow of the z - plane, which is illustrated on p. 100 (left).

Z

5!

.‘ﬂlNl

(13.12)
+(4 + A4 k*+ kY) ]

4+ 0

A source with the complex poteniial 43= In w in the w ~ plane is
transformed, by the function No. 13.12 into:

P (E) = lnsn (i,k). (13.13)

Thus this function represents the two-period source and sink field which is
illustrated on p.100 (left). 1In order to arrive at the potential flow which
i1s looked for, another transformation is required:

T = 4 lnf (13.14)

by which all straight lines of the Z -plane which are _parallel to the X -axis
are conformally mapped in concentric circles of the -plane, and all
straight lines parallel to the §¥ -axis in radial rays of the § - plane which
pass through the center. If equation No. 1314 is introduced into equation
No. 13.13, the following result is obtained:
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q](g) - ln[sn{ilnﬁuk)}] =~ ¢+iy . (13.15)

This complex function represents in its real portion the potential lines95
and in its imaginary portion the flow lines Y . The last transformation
(No. 13.14) attains not only a transition of parallel strips into closed

circular bands, but also a logarithmic distortion of the periods which are

equal in the y - direction in such a way that, with increasing radius, the
periods increase steadily.

A r 7"-87 ( f = iln§ .
% +iy = Lln(Fe"’)
r = LinF - P (13.15a)
Q
1 X = ~F
}M ‘ _ J = InF
A«y- )7 R Ay = Ln n: U’ln‘

A circle of the radius r = e® = 1 ig coordinated to the line y = 0 of the

z - plane by the projection z = i 1n in the - plane. The straight
line in infinite distance parallel to the X - axiS of the z - plane corre-
sponds to the zero point of the g - plane through z = i 1n¢ =- i ™9 .

The entire lower half-plane of the Z - plane would be projected to the

interior of the circle r = 1 of the_? - plane, while the upper half plane

of the Z - plane is projected on the exterior of the circle T = 1. Since

the circle S - S (figure at the lower right) corresponds to the straight line

e (in the left figure below), this circle is the flow line for the bearing flow.




The constant k is designated as modulus of the elliptical function

-101-

and depends on the elementary periods K and K' or their ratio K/K'.

In order to have the boundary conditions, selected for the bearing,
fulfilled by the transformation function No. 13.15, the following coordina-
tions between the figures above must be observed.

v - period
a...O
Deaoo K2
c...'2K72
logarithmic
d e .« 3K/2
coordination
e « . o 4KY2
f ... 5K/2
g « « o 6KY2

arithmetical progression

If, on the outset, the site of the gas feed r

V;z = Ya .Y}

that the following applies:

r - period

o ®
L

(o TR ¢ ]
.

.

g o

Lo

(13.16)

(cf. equation No. 112), it is feasible to insert the r -periods of the
plane into a geometrical progression with the quotient

X - period

A L ] * * ‘ O
B [ ] L K
C.s .+ ZX
Dee . 3K
E . . 4K
A ... 2K

linear coordination

Thus an angle of 360° corresponds to the distance 2nK.
exceeded in the ¥ - direction, the cycle is resumed in the

leaf according to Riemann).

yra/ri.
- period

A... o

B . oo TI'/n

C o o o ETT/-TI

Dyoeso 3Ww/n
B .. 4 w/n
A ... 2T

If this value is

g - plane (2nd

By comparison of the corresponding periods, the constants for the

Jacobi function

o 1Ls chosen in such a way

(13.16a)
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K'=1lnv W n/n)"(f ra/n)‘- lnr, (’717’:)«(Y"_':/_'-':)3 = LW%‘ =2ln % (13.16b)

and k =JU are obtained. For the ratio
n

K T

the modulus k2 for the transformation function can be obtained from one of
the references (XXIV) or (XXV). The comodulus k' which will play a role in
later studies is determined by the equation:

k2 + k2 = 1.

Since the coordination between K and k and, respectively, between K' and k'
is unequivocally defined by integrals (XXIV) and the magnitudes of the K and
K' values calculated from the given bearing conditions are not in agreement,
in their absolute values, with the values of the basic progressions given in
the function tables (XXV), another transformation must be made in such a way
that the arguments and periods in the direction of the coordinates are en-
larged or reduced. This conversion factor will be designated as adjustment
factor V. Thus the following applies:

\
V = Kr o K& (13.16d)
K K
where T is an index indicating the relationship to the Table. The arguments

for this coordinate directions are found, in analogy to the periods, as:

r - direction . . . V 1n r/r, (K'T =V 1ln ra/ri)
. N
q - direction . . . V C? (Kp =V JT/n)
By introduction of this last transformation into equation No. 13.15
- i
.§ = §V - (I_ e y)V (13.16e)
Vo

The final adjusted function of representation results:

D(5) = a[snfilng}] - o2

The solution, or separation of equation No. 13.17 into real and imaginary por-
tions, is done the following way: If the inner logarithmic function is resolved,
one obtains:

() = lnfsn(-ve + iVing k)1= o riy L3
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Then the "sinus amplitudinis" is solved according to the addition theorem
described in reference (XI), and the result is:

f(s) =

- I.n. sn(-

(13.18)

\ r \
Vg, k)dn(Mn f (k') +4 cn (Ve k)dn(-Vg,k) sn(Vin L k)en (Vin v 1K) ,
e (Vin 1o k) + K snifzVe k) sn'(Ving &)

where cn and dn represent the cosinus (cosine) and delta amplitudinis func-
tions, respectively. Since, however, the following applies:

sn(-Vg k)= = sn(vy K

cn(-Ve k) = cn(Vy, k)
dn (-Ve.k) = dn (Vg k)

(13.18a)

and equation No. 13.18 is resolved according to the following principle
ln[o.+ Lb) = lnyor+p* 4+ | arctg—g_— (13.18b)

the results are as follows:

¢ = [nvsn‘(vy.k)dn‘(vm%.k')+cr? (Vy k) dn" (Ve k) sATVIN S ) cRVin G k) (13.19)
cn"(Vln—%.k') + k*sn'(ve, k) sn*(Vin %| k')

.and

Yo r o
y = arc fg cn(Ve k)dn (Ve k)sn(viny K)en(Vinyg i k') . (13.20)

= sn (Vg k) dn(Vin & k)

Boundary conditions: The boundary values of the potential <“ as a func-
tion of the bearing geometry can be easily found.

1) If the nozzle diameter or the larges.t diameter of the counterbore of
the nozzle (cf. Chapter 12.1 C) d <{ r,, one obtains for small arguments

V,
bt

en Vy & V? (13.20a)
cn Vp. = dn Vy a1
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and for r = ro the result is:
sn (0) 0, cn (0) =dn (0) 1.

From this one obtains, by introduction into
equation No. 13.19:

Vd
qi,, = In 21,  (13.200)

2) The following can be given as potential value of all circular potential
lines (limiting potential lines)

CD"L‘:““
L = Vtyq:‘ (13.20¢)

whereas the potential for the stagnation point S situated between two adja-
cent flow fields is ( r = rg, q = JU/n)

¢ = O

The coordination of pressure and potential was given already before by equa-
tion No. 13.3,

Example of calculation.

In a bearing of the following given dimensions and operating values:

flow medium: air
\

n = number of nozzles which open directly into the clearance.

q = 60,0 mm Stromungsiedium Luft
re = 38,75 nm p, = "8.10%  Xxp/m
r, = 25,0 mm p, .= 1.10% _ kp/m?
d = 0,7 mm n = 1,85.10° kp.s/m*
o= 93,4 cm h = 20.10% m (13.20d)
n . . Anzahl der direkt in T a 293 °K
den Spalt mindenden R = 29,3 m/°K
Diiscn

the load capacity and the flow volume were determined at a varying num-

ber of nozzles, n. Since the integrals No. 13.8 and No. 13.10 cannot be
solved mathematically, only a numerical procedure could be applied, using the
potential function found, No. 13.19. By subdivision of the half-sector of
the carrying surface in the r- and 9 -direction into many small parts Zx’r
and A 9 » the load capacity is obtained as:
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o T/n

KI — ZYI Z'. g Pr APA? (13.21)

and the amount of flow as:

~ 3 * Tn 7 AL arg .
6 - S tear it tonr] ) 00

where q’ArG' and ¢&-r, represent potentials dependent on @ at a dis-
tance of [3r and A r; from the outer and inner boundary, respectively,

Results

n K K' x* k'* v Kr KT b, ¢,

4 0,785 0,875 0,390 0,610 2,25 1,770 1,960 -3,897 0,236
6 0,524 0,875 0,080 0,920 3,06 1,604 2,684 =-3,550 0,631
10 0,314 0,875 0,004 0,99 5,01 1,574 4,385 =3,010 1,382
20 0,157 0,875 0,000 1,000 10,00 1,570 8,750 -2,405 32,697

n I;kP c 6 :r/s (.}Lgr/s & gr/s Ga /Gn. - C'i. /G'n -
4 233 0,312 0,3%4 0,365 0,757 0,2075 0,1911

6 284 0,38 - 0,625 0,576 1,202 0,3295 0,3035
10 348 0,465 0,942 0,870 1,812 0,4970 00,4590
20 422 0,564 1,482 1,365 @ 2,847 0,7805 0,719
o 48 0,650 1,899 1,899 - 3,798 1 1

(13.22a)
On page 106, the isobars calculated for the data given are illustrated for
n =4, 6, and 20 nozzles at a magnification of 2 : 1.

Load capacity.

The results of the calculated example are plotted in the Diagrams 13
and 15 as functions of the number of nozzles. The load capacity of the bear-
ing was represented there with the aid of a dimension-less load factor

C = KL (13.23)
TR FL
where KI is the absoluts carrglng capacity of the bearing; FL is the area
of the bearing Jt (r -r; )5 Py is the absolute pressure directly
in back of the nozzles The factor C is, of course, not applicable every-
where but is again a function of the ratios pl/p and r_/r.. 1In order to

allow a comparison to a bearing with radial flow only (annular clearance
feed n = ©% ) with respect to load capacity, the load factor Cn =00 1is
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calculated. From the equations No. 10.6 and 10.7 it can be deduced that
the absolute load capacity for such a bearing is:

K]‘_ - T P»\(r; qu, -+ n’a. Cui) . (13.23a)

By the equation No. 13.23 and consideration of equation No. 13.16, this is
transformed into "

(
__Cka"'cki.—r_': .
anw* 4__(11.2
Ya

In the comparison of individual bearings to each other, not the absolute num-
ber of the feeding nozzles is decisive, but
rather a proportionality factor obtained
from the distribution of the nozzles and
width of the ring; this factor gives
approximately similar potential distri-
butions for the individual bearing sec-
tors. 1In order to be able to arrive at a
more generally applicable result from the
calculated examples given above, a sector
ratio T is introduced which can be deter-
mined from the quotient

(13.24)

. to 2T/
T = —2 = Ll o (13.243)
rQ."rl: h(ﬁ—rc)

Using the equation No. 13.16, the following ic obtained:

T = 21 .
= = :
ny?@:(/] - .?:) (13.25)

In Diagram 15, the ratio of the load capacity factors C/an‘go in the calcu-
lated example is plotted as a function of T . 1In order to answer the ques-
iion how many nozzles should be arranged on the circumference 2 T, - this
question will come up when a bearing is being designed - the fact that the
load capacity increases steadily with an increasing number of nozzles, must
be remembered. As can be seen in Diagram 13, however, the course of C shows
first a steep rise with an increasing number of nozzles, but increases only
slightly beyond a point which is established to a greater or lesser degree;
Thus in that region, an enlargement of the number of nozzles does not bring
about a considerable increase in load capacity. 1In the calculated example
(ra/ri = 2.4) this critical number of nozzles would be n = 20 -~ 24, The loss
in the calculated load capacity compared to a bearing with annular clearance
feed would be about 11% (if it is based on the measured values, only about 5%).
Corresponding to this number of nozzles, the following is obtained:
T = 0.25 -~ 0.35, and, for the design of new bearings:
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18 — 25

n = .
(1 - %)

is the optimum number of nozzles.

(13.26)

Amount of flow,

The results of the calculations of the flow weights of bearing
air are represented in the Diagrams 14 and 16. The outward and inward flow-
ing portions are divided by the amount of throughput G, =ee which is required
at a strictly radial flow (cf. equations
No. 7.19 and 7.20). The fact is worth
mentioning that, in spite of conformance a
yith quation No. 13.16, the values for
G, and G; are different in the presence
of individual nozzles. 1In order to make
this fact more clearly visible, a nozzle
with the boundary flow line (circle
2 r, T ) is drawn in a magnified scale.
Since the boundary of the nozzle is formed by
potential line<b1 and a uniform mass flow perpendicular to * prevails, a
larger portion of the circumference of the nozzle is available for the flow
outwards.

Measuring results.

In the Figures 1 and 2, in which the experimental equipment is illus-
trated, the course of the flow lines and the pressure distribution in a bear-
ing with four individual nozzles which open directly into the clearance,
could be measured. The actual sites of the pressure taps where the measurements
were taken, and those reduced to a quarter sector, respectively, are shown on
p.112, The picture of the flow lines could be taken by means of small amounts
of o0il and water of condensation which entered the bearing, at the beginning
of the measurements, on account of the absence of a satisfactory separator,
together with the compressed air and left behind yellowish colored traces on
the bearing surfaces. One half of a bearing with the detected course of the
flow lines is illustrated on the top of p.113. Since the radius of the feed-
ing nozzles r_ is only slightly different from the conditions according to
equation No. ?3.16, the line which separates the mass flows outwards from
those inwards is, as expected, a circle. Likewise, the stagnation point S is
clearly visible. The isobars measured for two different bearing gas pressures
Pp are also plotted on p. 113 (middle and bottom). A comparison by super-

imposition of the flow lines and isobars shows a very satisfactory orthogo-
nality of the two groups of curves.

In Diagram 13, measuring points for the load capacity factor C are
plotted as a function of n. The points at n = 4 and n= 30 were measured by
means of the experimental equipment which is illustrated in Figures 1 and 2.
The point at n = 8 could be ascertained on the thrust bearing of the experi-
mental compressor (cf. Fig. 12). This shows clearly that the measured values
are always higher than the theoretical results. This deviation can be traced ‘
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back, in part, to the fact that, in the theoretical studies, the retarding
portion w.dw of the flowing medium which occurs at high entrance velocities
into the clearance, was disregarded. The total energy which is introduced
into the bearing consists not only of the static pressure p; which was
measured and was the base for the comparisons of the calculations, but also
of the velocity component which is transformed into pressure energy and fric-
tion energy in the course of the clearance flow.

The area of the nozzle cross sections has no influence on the abso-
lute load capacity of the bearing, unless the character of the flow is signi-
ficantly changed, but it has an influence on the correlation between height
of the clearance and load capacity. If, for example, cylindrical feeding
nozzles which open directly into the clearance are counterbored at the side
of the clearance (cf. Chapter 12.1 C), a shift of the load capacity charac-
teristic into the region of larger clearance widths is obtained. The advan-
tage of achieving a larger clearahce and thus increased safety of operation
at equal bearing load is counterbalanced by an increased volume of through-
put. Measurements in a bearing with and without counterbored nozzle on the
side of the clearance are shown in Chapter 15. Summarizing, it can be stated
that the number of individual nozzles has an influence on the absolute load
capacity; and that, on the other hand, the effective area of the feeding
nozzles has an influence on the correlation between KI and h.

14. Bearing characteristics.

In the present chapter, the characteristic magnitudes are represented
dimension-less for various arrangements of the bearings and flow patterns by
means of the continuity requirement between the amount of gas flowing into
the bearing through the nozzles and that escaping from the clearance.

The functions designated as bearing characteristics in the following
were derived under these conditions: 1) The change of kinetic energy of
the flowing gas was disregarded; 2) The rotation of the disc was disregarded;
3) Short cylindrical nozzles, throttling clearances of apertures as feeding
elements were present.

The characteristics

2 A
f(éﬁl%"“ﬁ) = N\ (.0

represent there pressure dependent functions the values of which are deter-
mined by a dimensionless number which characterizes the kind of bearing

and nozzles. The bearing characteriftics are very useful for the determina-
tion of the total course of K es OrF G over h., By this method proposed for
representation of the bearing, furthermore, not only the condition of the
bearing at any time can be shown, but also the influence of change of the
size of the bearing, of the area of the feeding nozzles, of the kind and
temperature of the gas and of the height of the clearance appear immediately.
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Actual distribution of boreholes in which the
pressure was measured

Boreholes reduced to one sector

fa= 6GC mm
o= 40 mm
ri = 25 mm

D = nozzle
Number = Radius of the
borehole
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fa = 60 mm
fro= 40 mm
ri = 25mm
d = 0'7mm
n = 4

Flow Lines

T . O, \
R =
< )

% .m.
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14,1 Radial flow.
A) Laminar.
In order to have equilibrium in the bearing, the amount of gas which
enters through the feeding nozzles must be equal to the amount which flows
out through the clearance. Thus, if the equation No. 12.2 is equated to the

sum of the two equations No. 7.19 and 7.20, the following is obtained after
contraction of the individual members to dimension-less terms:

} AR ("%%ﬁlll
%] -1

T [__ hp ] 1, A
12 L‘ARQ zgRT{Lnn: " ln-rﬁ_"
L

(14.1)
where the following equation was applied

o _ PP (14.1a)

e P

For constant pressure ratios pB/p and adiabatic exponents & , variation of

P1/py yields different values for the term on the right side of equation No.
14.1; they must always be equal to the bearing characteristic l& . Thus the
follow1ng applies to the characteristic for the laminar radial clearance flow
inwards and outwards:

- L h’p, 1 4 } (14.2)
A= 12[~szvzgRr ]{Ln%{' inf) -

It should be considered in this connection that the term of the square root
in equation No. 14.1 for

PN (_2._)'5-‘«‘ (1. 22)
Fh Kt

has the following limiting value on account of the critical outflow from the

nozzles (velocity of sound): 4
¢ ( 2 o-1 -
V,{_4 X} (14.2b)

Diagrams 17 and 18 show the j& values as a function of the pressure ratios
for # = 1.4 (air) and 3L = 1.66 (helium). It can be seen that the influ-
ence of ). 1is very slight.

The same characteristics apply, of course, also to bearings where the
flow is only in one direction. Thej{,L values, modified accordingly, are,
for the outward flow:
3
Th P

W W ‘(1u.3)
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and for inward flow, exclusively, in a bearing

- Thp A S (s
A T FonyzgRT N &

B) Turbulent.

In a similar way as in the laminar flow, the amount of gas which enters
through the throttle elements (cf. equation No. 12.2) is equated to the amount
flowing through the bearing (cf. equations No. 9.13 and 9.14). Thus the di-
mension-less characteristics are obtained from:

¥y n‘h’[ A _ d ]
R L

’ P N (14.5)
=GR (BR)* .
P2 ()™= 1

For the term

%[(ﬁ)%—(%) 1J {14.5a)

the same limitation applies as in the case of laminar flow. The function of
the different pressure ratios on the right side of equation No. 14,5 varies
somewhat from the conditions at laminar flow. For }¥ = 1.4 and 1.66, the
charactertics for several pressure ratios of the bearing gas, PB/PQ, were

represented in Diagrams 19 and 20. The following bearing characteristics
result for the bearing with flow in both directions

A 1 (14.6)

i e A
4T*h '
A =BT
oo el ) il
for the bearing with outward flow oaly

Yy the K

Ar=Cud e fl v

and for the bearing with inward flow only

.W 4 -
= (14.8)
‘[\J' . [«F} Y5(> I ni)

Yai
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14.2 Parallel flow.

A) Laminar

The amount of throughput through a parallel clearance of constant
height and the length 1 is, when the change of the state of gas is isothermal:

: h’pr[( = 1] (14.9)
G = ZHQRTL .

If, therefore the equation No. 14.9 is equated to the equation No. 12.2, the
dimensionless characteristics are after a transformation:

h*b p. _ Pa i [(v’;: ‘;: - (-‘;‘;Tr;;)%] (14.10)

2imFonf2gRT L R (%)1_1

The right.side corresponds again to the pressure function which has been de-
rived in radial flow; The Diagrams 17 and 18 apply here, too. Thus the
bearing characteristic for parallel flow in one direction is

A, = h®b pa
- ZH/A'FoQ\FgRTL

(14.11)

and, if it occurs in both directions

\\
=

o)

D= 2imTol V2qRT L4

— Pa

LI
l

(14.12)

La l2

B. Turbulent

The amount of throughput for the compressible, isothermal flow throughh

a parallel clearance 1is

(14.13)

29n°b* . ..
G- %rlQTL (pr-v) )
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Thus, by equating to equation No. 12.2, the characteristics represented in
Diagrams 19 and 20 can be applied in an analogous way. The bearing charac-
teristic for the parallel flow in one direction only is, therefore:

/ = b [2gh® (14.14)
j\' “Fs V RTArL

For the flow in two directions from a central channel, the characteristic
is as follows: '

A = b 29h3[ 1a_ ] ] . (14.15)
T M F‘D RT b 7\1’1 Lﬂ ‘RT)_L(_

14.3 Potential flow.

The bearing characteristics calculated before for the laminar clear-
ance flow apply also to a bearing equipped with nozzles which open directly

into the clearance where the flow pattern is given by a potential function
(cf. Chapter 13).

A) Annular shape

If the amounts of throughput through n nozzles (cf. equation No.
12.2) and through the bearing clearance (cf. equation No. 13.10) are equated
the consequence is:

’

=M \[; gﬁé'r R G (%)

If equation No. 13.5 is also taken into considera-
tion, the result for the characteristics is:

d
N(ad w 29
Wnp Uo (—V‘-)m rdp +L GTF‘)& rdy]
24 p mFo \[29 RT (4)1 — ¢L)
(14.17)

_ o (SRR GR)*
o P
(f) -1
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The bearing characteristic can also be written in abbreviated form:

hsn- Pa.
= (14.18)
AN = Ty m Fo[2gRT Se
where QQ represents a value which depends on n, pl/p and ra/r" in an

experime.t with n = 4, ra/r. = 2.4, d=0.7 and }L, = 0.78, for example,
the following results were obtained:

P4 /pz_ = 3’ 8
B) Rectangular shape. . 4 X

The laminar isothermal flow

through a clearance with an arrange- (0] &
ment according to the drawing at the
right, requires an amount of through-
put of

b
. Qd> >
- = hB(\o1l ‘pxt) j;((—a?){" dx . (14.19) \

G=-2 : : -
2y RT (¢4 ¢1) Y

By equating this formula to equation

No. 12.2, the bearing characteristic \41

results as: S

i 9, ¥ h
wp LB dx " L\
AT VgRT (¢~ )

(14.20)

lALL_“=
¢%'le

Its dependence on the pressure ratios is again shown in Diagrams 17 and 18.
For the effective throttle area F the following applies both to annular (A)
and rectangular (B) bearing surfaces but depending on the design of the nozzle:

N | Fi N I\

| \

NN NN

e vl R Ve e

|
d
;

E-drh F = dz_HL (14.20a)
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Synopsis of the bearing characteristics
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15. Results of the experiments.

All the experiments were performed in air at regular ambient tempera-
ture. The required compressed air was tapped partly from the factory pipe
system (7 atmospheres) and partly from a special valve testing station (40 at.)
which was fed by a two-stage ""Rotasko" compressor system. The air was puri-
fied by a filter with layers of cotton, silica gel and activated carbon. At
the outlet of the filter, a sintered porous steel plate was inserted in order
to prevent the penetration of solid materials into the bearing.

15.1 " Heating.

In the following, it will be shown in an experimental bearing how the
average temperature of the fixed axial disc I changes from the initial value
as a function of time and what the stationary final temperature of the disc
will be if the removal of heat is taken into consideration. The experiments
were performed with the gas bearing testing apparatus which is shown, as a
section, on p. 137(cf. also Figs. 3 - 11). The double—~acting thrust bearing was
loaded by means of a pressurized air cushion on the front side of the right
end of the shaft. On the left, carrying side of the thrust bearing, a clear-
ance hy which was large enough for operation was adjusted by the admission of
the bearing air. On the right, load-free side II of the bearing no air was
fed. In the initial stage ( n = 0), the temperature of all parts of the bear-
ing was equal to the temperature of the bearing gas at the inlet; 1t was
kept constant during the experiment. At the start of the measurements, the
rotation of the shaft was very quickly adjusted to the desired r.p.m. value
which remained constant during the test. On account of the heat of friction
in the carrying bearing clearance, the parts of the bearing underwent a slow
heating.

Calculation model and assumptions:

Since the heat transfer in the

clearance (cf. Chapter 6) is very good, B\N 1 /V<

it is assumed, at any time, the tempera- NA T T V- 7
tures of the gas at the outlet from the ' TR \\\éé l Z %
bearing and those of the parts I and III ' T )

are equal. The heat which is generated - T 1\\

in the clearance hI causes heating of .,"_..= '—"hn

the discs I and IIT and, besides, com- (51 N\ T

pensates the different losses of heat 2

to the outside. Between the fixed disc
I and the spacing ring K, several cali- g -
brated shim-dises B (of 3 mm thickness)

were inserted in order to increase the

total free axial space and to reduce QY n
heat conduction between disc I and the I
casing. Since the ratio hH/h.I = i \\\
3000/20 = 150, the amount of heat \\\ 52;%;9/
generated in the clearance hyp by i}(I\\ i /5
rotation is smaller by the same factor

and can thus be disregarded.

‘
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The meaning of the symbols used in the following is:

[»E)

= Gy + éi (kg/sec) is the total amount of gas flowing through
the bearing;

(kcal/kg °C) is the specific heat of the bearing gas:

Ckf

(kg) is the weight of the dises I and III;
p (kcal/kg °C) is the specific heat of the bearing discs;
t (sec) is the time;
T (° C is the temperature of the bearing gas at
. the inlet;
Ty = £(t) (° ©) is the temperature of the bearing gas at
the outlet = temperature of the discs I and
I11;
Tp = T, o is the temperature in the surroundings of
< o the test equipment;
T2 (G is the stationary final temperature of the
9 discs I and III;
mn (kp sec/m”) is the dynamic viscosity of the gas;
R (m/° ¢) is the gas constant;
hy A (m) is the height of the clearance on the
,IL loaded side of the bearing;
(1/sec) is the angular velocity;
A (kcal/m kp) is the energy equivalent;
r (m) is the radius of the bearing;
é (kcal/sec °C) is the factor of the portion of heat removed

by shaft and casing.

Heat balance

1) The heat generated in the clearance hI by rotation can be deter-
mined from equation No. 6.8

- : 2 n+tA 3
dQuw. =G dq\luz =- i—l%;——' rodr ) (15.1)

(a, + : flow outwards i, -: flow inwards)

Integration of this equation using the limits T1a = Fpy and ry. - ry; gives:
(NB. The bearing has a continuous ring channel; cf. Fig. 8)

N A TS 2 .
QIUI = AGoJ'd(liUl + A G"J\dq\t“k = TL%:%\-:A Y;:,' r;: + n:, - rli"] (15.2)
Ti0. n.i.

2). The heat removed by heat conduction across shaft and casing, and
by convection (ventilation, air currents) is almost proportional to Ty = T ;
1!
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on the other hand, the gortion of heat removed by natural convection is pro-
portional to (T, - T_) /4 Since the exponent of the second item does not

deviate very much frém 1 and, besides, its value is low, it can be assumed
that the total heat removed 2:(3,V can be defined by the following term:

2ZQv = J(Tz"T‘\) (15.2a)

The factor g represents a constant whose value depends on the cooling con-
ditions in the bearing.

3) The heat removal per second by the flow of the bearing as is:

Qg = G ¢ (a-Ta) - (15.2b)
4) A portion of the heat produced is accumulated in the bearing discs
I and III.
~ - dT'l. B
QSP = GCp at (15.2¢)
Thus the heat balance can be derived from:
M —‘— dTl
Qaur = [G cp + 0 ](T-T4) + GCp dt | s5.®
Written in another way, it 1is
dTP = dt ) (15.4)
b-aTl

where a and b have the following meaning
Quva

= GC++_J; and b = alh + == (15.4a)
Gé&p G Cp

Integration of equation No. 15.4 yields the dependence of the bearing tempera-
ture T, on time

a

4 T t+C .~
-2 - = . 15.4b
= Wn(aTa _ b) ( )
The integration constant C becomes, if the limiting conditions are t = 0,
T, = T_: 4 ’
2 & — -
1 C o n(aT, b) , (15.4¢)
This gives, for the course of the temperature:
Qluz cat £ g
T = T -+ -—————(’1 — e (1£.5)

After a sufficiently long period of time ( t =) ©0 ), fhe following applies:

- 15.°5
0 «— G?Ot < 4 ( a)
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and the final temperature is:

TR T 4 e . (15.6)
Ay 1 GCP+J
The linear rise of temperature at the beginning ?f the measurement can be
found from equation No. 15.4 assuming t = 0, d =0, T2 = Tl.
(de> - Qua (15.7)
dt t=0 GCP

The measurements reported in the following are to show the order of magnitude
of the heating and of the starting period in aerostatic thrust bearings. 1In

the different series of experiments, only the r.p.m. were changed, while the

other operating conditions, namely load capacity and amount of throughput re-
mained constant. The dimensions and operating conditions of the experimental
bearing were as follows:

Ty = 0,055 m G = 69,75 kg

rqa = 0,087 m Ce = 0,11 kcal/kg °C
rwa = 0,089 m G = 1,26.10" kg/sec

Tia = 0,133 m Cp = 0,24 kcal/kg °C
s = Q, mm R = 29,3 m/ °C
(Ringkanaltiefe s) Tq=a Th = 17,0 °C

hy = 20.10°* m D = 1,90.10"°kp sec/m*
hn = 5-10-5 m .

Ringkanaltiefe = depth of the annular channel. (15,.7a)

Diagram 21 shows the measured temperature of dics I. during the pre-
heating period as a function of the r.p.m. The results of the Partly measured
and calculated values are: (t*= length of starting period)

u/min = r.p.m. - gerechnet = calculated - gemessen = measured.

n Qavz (a7, /dth.o TS J t* Anlaufzeit
u/min gerechnet gerechnet gemessen gerechnet gemessen
10 000 0,1149 0,898 41,2 0,04720 130 (1575
12 300 0,1731 1,355 5%,3% 0,04745 140 :
15 060 0,2560 2,000 67,4 0,05050 135

kcal/sec °C/min °C 'kcal/s°C min

The measured temperature gradients at the beginning of the experimental series
are in complete agreement with the calculated values. The factor was

calculated from equation No. 15.6 by means of the measured final temperatures
Tg. The measurements show that the starting period t¥X is almost the same at
different numbers of rotation. The equation No. 15.6 can be written in
another way:

d(T*-T.) + Gee(TV-Ta) - 1 (15.7¢)
Qaua Qauz
—_— —_—

A B
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in order to illustrate the portions of heat which are removed, on the one
hand, by the bearing discs and, on the other hand, by the bearing gas itself,

n u/ini:_x m A% B % (15.7d)
10 000 P 93,64 6,37
12 300 93,67 6,3%
15 000 93,06 5,95

Summary: The experiments show that heating of aerostatic bearings must be
taken into consideration because the heat removed by the bearing gas, in con-
trast to fast running hydrostatic oil bearings, is only a small portion of

the amount of heat generated. The components of the bearing and of the adja-
cent casing must, therefore, be designed in such a way that satisfactory re-
moval of heat is possible.(if necessary fins or a cooling system should be
provided). On account of the relatively small heat of friction, preheating to
the thermally stationary state takes a very long time.

The problem of heating of the bearing becomes, however, less important
at a higher pressure level of the gas surrounding the bearing (e.g. in encased
machines or those operating under higher pressure). The amount of heat intro-
duced by bearing friction (cf. equation No. 15.2) depends only on the viscosity
of the gas when the dimensions of the bearing, the height of the clearance and
the r.p.m. remain constant. But since is independent of the pressure level,
the amount of heat introduced is the same at low and high ambient pressure.

But the effect of the amount of bearing gas through & is quite different.
According to equations No. 7.19 and 7.20, & increased, at constant height of
the clearance, significantly with pressure P, and p2, respectively, i.e. the
heat removed by the bearing gas

Qe = Gecp T (15.7e)
increases with the pressure level while Qz remains constant. From this it
can be concluded that the excess temperatire of the bearing
A ~J —rz“ (15.76)
G cp

is substantially lower at a higher pressure level than at normal surrounding
pressure.

15.2 Pressure patterns,

The pattern of the radial pressure was measured, with the shaft in
fixed position, in the thrust bearing of the testing setup (cf. Figs, 3 - 11
and the longitudinal section of the testing apparatus on p. 137). The fixed
bearing disc (cf. Fig. 8) was equipped with a circular annular groove into
which, in order to render the gas feed more uniform, 20 cylindrical inlet
nozzles of 0.7 mm hole diameter opened. On account of the high absolute
pressures, 7 mercury high-pressure differential manometers, which are illus-
trated in Fig. 5, were connected in series. Fig. 6 shows the connections of
the instrument leads from the fixed bearing disc. The measuring pressure taps
4 mm diameter which open into the carrying bearing clearance can be clearly
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seen in Fig. 10. 1In order to avoid mutual interference of the pressure taps.
their arrangement in the direction of the circumference was somewhat stag-
gered. (cf. Fig. 8). 1In Diagram 22, the measuring results for different
initial pressures p_ at constant surrounding pressure p_ are plotted for a
height of the clearance h = 20 x 10-%m. The fully drawg curve represents
the theoretical course of pressure as it can be deduced from the approxima-
tion equations No. 7.14 and No. 7.18. :

15,3 Bearing characteristics.

By means of the large gas bearing testing apparatus (Figs. 3- 11),
the bearing characteristics j& were measured for laminar air flow in the
clearance as a function of p./p_ "and plotted in Diagram 17. A preliminary
experiment was performed in ordér to determine of the nozzle outflow coeffi-
cient |4 . From the amount of flow in critical flow, through the
nozzles, F_. could be obtained. " In order to adhere to the desired dimen-
sions of the clearance, several spacing foils of equal thickness were inserted
into the carrying bearing clearance at equal distances; besides, the whole
shaft or the movable bearing disc, respectively (cf. Fig. 7) was subjected to
a strong pressure during the measurement by means of a heavy thrust which was
produced by the application of a pressurized air cushion on the front side of
the shaft (cf. the longitudianal section on p.137 , on the far right). The
pressure p; could be determined very accurately - in a similar way as in the
measurement of the distribution of pressure - by means of the differential
monometers in series. As can be seen in Diagram 17, the concordance between
calculation and experiment is rather good. No experiments were performed in
the turbulent region of the flow.

15.4 Amount of throughput.

A) Bearing with annular compensating space

In an experimental bearing with the following dimensions

r,, = 0,055 m F, = 97,70.10°¢ m* (15.7¢)
Ty o= 0,087 m n = 20

. = 0,089 m s = 0,70 mm

Lra = 0,155 m

where r is the radius of the bearing, Fj; is the area of the nozzle, n is the
number of nozzles and s is the depth of the annular compensating channel, the
amount of throughput was measured for laminar air flow at a temperature of

T = 291° K, a dynamic viscosity = 1.85 x 10~6 kp sec/m? and an ambient
pressure of p, = 1 x 10LL kp/m2 and compared

with the values calculated according to equa- I - 88 !

tions No. 7.19 and 7.20. Diagram 23 shows -JL———-1 ®

the results of these experiments, i.e. the .6
amount of throughput as a function of the

N

7

ld-ov¢

g

T

height of the clearance. From the prelimi-

nary experiment, the average value of the '

nozzle outflow coefficient M. was found to ' \\ P

be 0.78. The twenty cylindrical nozzles dis- \\\\ t )
tributed on the circumference of the compensa- :>\ \§Q§f5=07
ting channel have a total area of F_ = 7,70 x b=2

10=° m2, For the comparative calcu?ation, the
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connection between h and p, was obtained by the bearing characteristics in
Diagram 17 (p. 105). The result for the given values is:

N1 = 2685 x 1012 x 13-
Thus the calculation of G over h is most advantageously done the following
way: h is chosen, L is calculated, the corresponding pressure ratio

Pl/P2 is determined from Diagram 17 and, finally, the amount of throughput G
is calculated from equations No. 7.19 and 7.20.

The measurement of the volume of throughput was done by means of a
DIN (=German Industry Standards) orifice of 6 or 9 mm, respectively, diameter
which was inserted in a measuring section. The pressure difference of the
orifice was indicated by the high-pressure differential manometer which is
illustrated in Fig. 6 (left front).

B) Bearing without compensating space.

In a later design, the annular channel of the bearing described
sub A) was filled with a hardening plastic, then the surface of the bearing
was leveled again and the nozzles were bored again through the plastic
layer. Thus the nozzles opened directly into
the bearing clearance through the cylindrical
borehole. As expected, the measurements
showed that the amount of throughput (cf.
Diagram 24) has now a considerably flatter
slope with increasing bearing clearance.
This fact can be traced back to the throttl- i
ing effect between boundary of the nozzle \\ i
and bearing clearance. A comparison of the i \Q§S§>¥
two measurements A) (Diagram 23) and B) ;
Diagram 24) shows that the maximum amount of |
throughput is larger in the second case. The
reason for this is that, after filling the annular channel with plastic, the
nozzles were drilled for a second time and thus got a somewhat larger diameter.

88 |

l. dzos?
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27
77

77

15.5 Load capacity.

A) Bearing with annular compensating space.

In Diagram 25, the effective load capacity of the bearing described in
Chapter 15.4A is shown for the same gas states as a function of the height of
the clearance. The calculated load capacity, which is represented in said Dia-
gram as fully drawn line, is, as can be deduced from equations No. 10.6 and

10.7:
Kges = AT [Fia + NaCua +ntl(C“i"’)]‘PJT(Yil‘Cf), (15.8)

where the area of the bearing is:

Fo = T(ha -N"i) = 461 cm® (15.8a)
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Diagramm 26
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For the mathematical determination of K es over h, one chooses advantageously
again the height of the clearance h, whéreby the corresponding pressure ratio

P1/P2 for the given bearing gas pressure pp is obtained by means of the bear-
ing characteristic from Diagram 17. The two load capacity factors Cy and
Cki can subsequently be determined by interpolation from the Diagrams 5 and 6
(p. 60 and 62). It can be seen in Diagram 25 that the measured points ob-
tained are in every case lower than the calculated values. This deviation
can probably be traced back to insufficient precision of the manometer used
for measuring the pressure acting upon the free end of the shaft.

B) Bearing without compensating space.

The measuring results for the load capacity of the changed bearing
(cf. Chapter 15.4B) are plotted in Diagram 26 as a function of the height of
the clearance. It can be seen, in this connection that K es is substantially
smaller than in the bearing with annular channel. The lo§d was again applied
by means of a pressurized air cushion on the front side of the free end of the
shaft.

15.6 Nozzles with a counterbore at the side of the clearance.

By means of the testing device which is illustrated in Figs. 1 and 2,
a comparative measurement was made in one and the same bearing with different
nozzle designs. 1In the first experiment, the four cylindrical nozzles opened
directly into the bearing clearance, whereas, in the second experiment, they
were slightly chamfered on the side of the clearance. Diagram 27 shows the
load capacity Ks,o and the amount of throughput G for both designs as a func-
tion of the height of the clearance h. By the counterbore on the side of the
clearance and the en%argement of the effective throttling area connected therc-
with ( d JU h —» d° JU /4) the load capacity characteristic was shifted into
a region of larger widths of the clearance, the flow characteristic, on
the other hand, into a region a smaller clearance widths. This design has the
advantage that a bearing can be operated, at the same load, with a larger
clearance and thus guarantees a safer operation. This improved load effect is,
however, counterbalanced by an increased flow of bearing gas.

It could be shown in this experimental device, and also in other ones,
that the counterbore on the side of the Slearance (enlargement of the clear-
ance volume) of the magnitude D 2 d does not cause an unstable

4L h
operation as far as self-induced vibrations are concerned.

15.7 Measurement of the axial shift in a machine.

The determination of the effective axial shift in a machine during
operation can be performed in aerostatic axial bearings according to a very
simple method. 1If, firstly, it is assumed that the feeding pressure p, for
the bearing gas remains constant and that the bearing discs do not per?orm
any rotatory motion, there develops, in the presence of an axial shift in
the bearing clearance, a pressure peak whose total value corresponds to the
shift prevailing at that time over entire area of the bearing. Thus, the
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greater the axial shift is, the greater

pressures must be present in the bearing kgi?st : t\<§;SS§§S§:f§
clearance. If a bore for pressure ! |

measurement is made in the fixed bear- , <§22;
ing disc at any place whatsoever (pre- 4
ferably in a region with high pres- | +—- —t
sure), exterior application of a I

known pressure (either mechanically
e.g. by a stretching device and A
spring balance, or pneumatically by \\\
a pressurized air cushion) allows VK» \\\\
to measure the corresponding refer- l ges \\\\
ence pressure pp and to plot it in . E\
the form of a calibration curve as a

function of this axial shift K ese

It is immaterial, in this connection, 'A P
whether the bearing disc has a con-
tinuous annular channel for gas con-
pensation on the side of the clearance
or only individual nozzles which open
directly into the clearance. This
method can also be applied in double-
acting bearings (ef.the testing device
on p. 137) where the carrying side is
influenced by the non-carrying side. v
The only precaution to be taken is /7
that the calibration curve be drawn
under the same conditions (equal bear-
ing gas pressure also on the non-
carrying side of the bearing) as they
will occur later during operation.

If the calibration curve is drawn for
a bearing, the axial shift produced by the machine can now be determined, con-
versely, by measurement of the reference pressure Pp.

In practical cases, however,

resumptions described above are lings

not satisfied. The bearing gas pres- , /
sure p, fluctuates always in a higher Kgesta)
or lesser degree, while the components '&erp
of the bearing perform a motion relative qyy'&eﬁ
to one another. As can be seen, however, K | e(,)"\’.«;'—%e’
in Chapters 8.1 and 8.2, the influence aes) & et
of the kinetic energy of the gas flowing

in the clearance - this energy being sub-
ject to changes on account of pressure
fluctuations - and the influence of the
rotation of the disc are very slight and can be disregarded, especially for
small pressure levels (p, = 1 atmosphere). At increasing pressure pg and
constant axial shift onl){ the volume of flow and the bearing c]_earanpe

are enlarged, whereas the pressure peak and the reference pressure must remain

tk

ne

n "I

Ry P Pa
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Diagram 28 shows the calibration curve for axial shift measurement
in the four-stage radial compressor "Zurich 52" which is illustrated in
Fig. 12. The borehole for reference pressure measurement is located between
two of the eight nozzles which open directly into the clearance. The pres-
sure p, of the bearing air introduced fluctuated during the measureweuti
between /7.2 and 7.8 at. The load was applied to the resting shaft by means
of a cable line and was measured with a spring balance. The pressure PR was
determined with a tube spring manometer. 1In Diagram 29, the axial shift
which had been determined with the aid of the calibration curve (Diagram 28)
and the measured pressure Pr, is plotted as it occurs in actual operation at
different r.p.m.

16. Self-excited vibrations.

A self-excited vibration is defined as a free vibration with negative
damping. Every vibration with negative damping is dynamically unstable, i.e.
the amplitude become larger with time. The changing force which maintains the
vibration is generated by the mutual movement of the
bearing components themselves and is controlled by
+hAam

In aerostatic bearings, self-induced vibra-
tions occur especially in those cases where addi-
tional spaces are provided in one of the bearing
discs on the side of the clearance, in back of the
throttling elements. The installation of compensa-
ting channels or pockets serves mainly for the
improvement of the gas distribution in the clear-
ance and affords thus a considerable increase of
the load capacity compared to a bearing with punctiform gas feed. This
instability causes an undersirable very noisy vibration of the movable bear-
ing disc and of the adjoining free masses (rotor).

The reason for the appearance of such a vibration can be traced back
to the discontinuity between the amount of gas which flows into the compensa-
ting space through the feeding elements and that which escapes from the bear-
ing through the clearance, and also to the fact that the compensating volume
can be accumulated on account of the compressibility of the gas. From this
fluctuation of quantity, a corresponding pressure fluctuation results which
is decisive for the exciting force.

In the bibliography listed in p. 8, a linear differential equation of
third degree is shown which relates to the height h of the clearance as a func-
tion of time. This vibration equation was derived from the change of the
amount of gas in the bearing with time.

16.1 Equation of vibration.

In the following, the equation of vibration is established first in a
similar way as in paper (XVIIL), but for the case of a thrust bearing which con-
sists of annular supporting surfaces and with consideration of the actual con-
ditions relative to pressure distribution and amount of flow. In this
connection, it is assumed that the vibration of the bearing interferes with
the characteristic parameters to a small extent only. Besides, the simplified
equations for the clearance flow are used which were determined with the assump-
tions: w.dw = O,-IL= 0, T = const. 1In order to simplify the calculation, the
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temperature T_ of the entering gas is equated to the temperature of the carry-
ing gas flowing in the bearing clearance. The symbols used have the following
meaning:

Pp bearing gas pressure in front of the feeding nozzles (absolute)
p static pressure in the bearing clearance (absolute)

Py pressure in the compensating space (absolute)

Py ambient pressure (absolute)

h bearing clearance

m vibrating mass

weight of gas escaping from the bearing through the clearance per

aus second

éein weight of gas entering the bearing through the feeding elements
per second

Gy, total weight of gas in the bearing

TB temperature of the entering gas = temperature of the gas during
clearance flow

r radius of the bearing

FD effective throttling area of all feeding nozzles

s depth of the annular compensating space

b width of the annular compensating space

vVa volum@ of the compensating space

ZS sign for a small deviation from the equilibrium position

- terms containing this crossbar denote the state in equilibrium
position

The following drawing shows the arrangement of the bearing and the
course of pressure in the radial clearance as basis for the determination of
the self-induced vibrations. The inclusion of the resonator chambers described
below, which are connected to the compensation channel, in the vibration equa-
tion would be necessary for the exact study, but is too complicated for an
analytical treatment. The calculations are, therefore, limited initially to
the determination of the properties of a bearing (influences of the different
parameters on the stability, frequency of the bearing vibration) without any
precautions for removing the vibrations,
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In formulating the basic equations, it is assumed that the pressure at

. the start of the clearance flow (i.e. at ry, and ry;) is equal to the pressure
L p ATIN
: © (AR, ~N
/ l 1 AN
] AN

L// ] N
% ' ! 1\ Ap
a8 \
| \
p .

T o
~

1>

® - ah| W\

in the compensating space. Furthermore, the differentials are replaced by

finite differences on account of the small changes of the magnitudes pj, Gein’
éaus and h during the vibration. Thus we obtain the following:

Al = B o+ apt) ey (F) = Gi'.n + 2Gg, ()
P{Y‘it,} = p(Y‘) + APLrlt) G.!NS ({') = éau; + Aun; U(‘) (16-02)

ny

P
«r

~——
n

F\ M Ah(“ Gein = é—aus .

The first basic equation is a consequence of the fact that the difference be-
tween the amount of gas flowing in and out per unit of time must be equal to
the change of the weight of the gas in the whole bearing with time.

. : dGe
‘ AGeinU') - AGaus“’) = —a"{_

(16.1)
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In the case of short cylindrical feeding nozzles or orifices, the amount
entering, at constant pressure pp, depends only on p;(t) and is, according
to equation No. 12.2:

- - 293¢ A0S Sl P«(’c) i (16.2)
Gein ) o Fo Py (3¢-4)RTp W Ps } J

From this the following can be derived:

AGen ) = (’369‘“) AP 4] = X.BpG) (16.3)
and the time-independent constant is:

o« e BE Bl oo
rb |01 (X““)RTB (F‘ )2/& _ ( P1 )xn
P iy

The amount of gas excaping from the bearing through the clearance depends,
however, on the pressure p,(t) and the height of the clearance h(t). For
isothermal laminar radial flow, G,,s can be determined by means of the
equations No. 7.19 and 7.20:

: : : Trh’t*r)(v’f(Jf)—\"f) A 1 (16.5)
Gaus(.*) =Go.. + GL = 12 9 RTs [LV\ i T LV\% .

Thus a small difference [ﬁ é becomes:

aus

8 Gaus () = (R525) Al (1) + (?5——6‘;9-‘) AP ) (16.6)
or 7
AGass® = B.ahi) + X'AP"MI (16.7)
where the constants have the following meaning:

A = T (P P) [Ln d } (16.8)

‘-mRTg lnts
Th® P, [ A _4 ] (16.9)
+ . -
FmenrB Lnk ¥ Ink |

The amount of gas between Lhe twou bearing discs results from:
i

_ 2mhl fa - i s (16.10)
GL = RTB [j‘PY'dY' +Jprdr~+ 3 (»1+hm)'q1u)].
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If the equations No. 7.13 and 7.17 which apply to laminar isothermal clear-
ance flow are introduced for the course of pressure, the integrals give the
following solutions according to Chapter 10.1:

@ Cuka 2
JP-rdr =2 N BB = 5P g0

la .
Gi .
C:K‘ §l~ FLCU

L
p-rdr = =i Pt)
ni
Besides, the following applies:

_ fa -0 (16.10b)
$= =

Since the factors Cyxa and Cki which depend on the ratios of pressure and radii
do not vary too much for small pressure fluctuations (cf. Diagrams S and 6) the
values : 1 and o Which can be obtained from the equilibrium data, were
assumed to be independent of the fluctuations with time. The compilation of
the constants gives:

§= é;f (§4+§11—§3)= %2— ) (16.10¢)

where C is a load capacity factor referred to the whole bearing. Thus equa-
tion No. 16.10 can be written in a simpler way:

G. = {hit)p) + Pppd) = §(V\+ A‘n)(ﬁ + A\oﬂ)+ (P + AP}, (16.11)

where 1} has the following meaning:

1}1,,: Ts (fa-N) _ _Va (16.11a)
RTs " RTe

According to equation No. 16.11, the amount of gas in the bearing depends
both on the pressure and on the height of the clearance. The differentiation
with respect to the time t gives: (NB. In the following all terms marked
with a period sign on top mean differentiation with respect to time).

e loplah r(FR)eh < g uh 4 eah |

where the coefficients are:
J = §K + 1 and € = §.p . (16.12a)

If the individual equations derived, No. 16.3, No. 16.7 and No. 16.12, are
introduced into equation No. 16.1, it follows that:

(16.12)

(k-y)apw) - Aahl) = a/\A\?),,U) + € ah@ .0 (1619
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For the calculation of the height of the clearance h as function of the
time t, another equation is required whereby the pressure in equation No.
16.13 can be eliminated.

The equilibrium of forces between acceleration of the mass (free bear-
ing components and shaft) and the spring action of the bearing can be ex-
pressed, without outside damping or friction, by the following equation:

.o Via LETY
m.ah{) = ZWJ(P(H- P)rdr = Zvjap(t) y.dr
, i

d fi

(16.14)

Considering the data given above, the following can be concluded:

m A.L:] (4} = ?ﬂ'(§1+§1+§$) AP‘IU’J (16.14a)

which can also be written in another way:

e

= m . (16.15)
AP'1 -2_n_(§1 +§l+53) Ah

The desired vibration equation is obtained by iutroduction of this equation
into equation No. 16.13

ah + ash + bah + cah = 0 . (16.16)

where a, b, and ¢ have the following meaning:

Q=.L<}_i’(_

. (16.16a)
b = 2 ($a+fa+55)E ~CF.€
m a md
C =2Tr(§‘l+§z+§s)/9 =CF;_3
md md

16.2 Influences on the stability.

The stability criterion for the vibration equation of third degree,
given by Routh (cf. reference XXVI) is based on the condition of positive
damping. The bearing drawn diagrammatically on p. 143 is stable, as far as
self-excited vibrations are concerned, if the following applies:

a.b > C (16.17)

A) Feeding nozzles.

In order to get a high value for "a", O must be as small as possi-.
ble. But since OU can only assume negative values between 0 and — OO
the requirement stated above is satisfied if the tangent to the characteris-
tic of the throttling elements has as steep a slope as possible in the
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operating point. 1In order to amplify the comparison of Short cylindrical
nozzles (characteristic D) and capillaries (characteristics K), which is
given in reference (XVII), the venturi nozzle (characteristic V) has been
included. For the comparison, the effective throttling area Fp and the
pressure p, in the point of interpretation towards the feeding nozzles is

maintained constant. (Equal G and equal load capacity in the point of
interpretation).

{ Gein : \
{ G 4 LA

T e \\K

|
) N |
the clearance*(\}; < \\W

g
e V-4 Lp vV
e \\Wk\ N

As can be concluded from the above comparison, the capillary nozzle
has the tangent with the lowest slope in P. The venturi nozzle, which has
a strongly bulging characteristic on account of the diffuser adjacent to the
lowest cross section, at high pressure ratios p,/p., (cf. Diagram 11) has,

in certain regions, a better stabilizing effect on the bearing than the short
cylindrical nozzle.

max

Characteristic of ¢

B) Volume of the compensating space.

If all the individual terms are introduced into the Routh stabiliza-
tion equation No. 16.17, the following applies:

(¥ ~*)e = dh (16.17a)

This is transformed, by introduction of the abbreviations and consideration
of the volume between the bearing discs, VL

Vi= Flh = (nX -nd)Th  (16:17D)
into |

CV Q_W%)—E: ~ (16.17¢)
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Thus the following result is obtained

— : Bx P, o2
TWR( A, 4 ), Raylzax eenR) - 2(5) }
116NRT, fe g YE ) 23 J(R-1)RTy\[TP\A (B
Lo NRTs an gnr;& V(‘E;)'('Pi) —1
CV. 'rrh’(?)f—\o:)( A A )
“pRTs \[pg2 n
(16.174d)

The division of the fraction gives:

. uF ‘Zﬁb[(xn —;P-’-_:E—— <P;)£i} (16.18)

T [(x-1) 7 }54{1, l’é)‘}[m" %WTO. - _g_)

It can be concluded from this equation that the stability increases with
decreasing ratio between compensating volume and bearing volume. In the

most unfavorable case of bearing operation, L = 0, i.e. the mass flow through
the feeding nozzles does not change if the pressure p., is varied. Thus
equation No. 16.18, written in another way, is transformed into:

Va 2 (16.19)
1+ 5 <= —=__ '

Another conclusion to be reached is that also bearings without compensating
space can be unstable. When V, is chosen as zero, this can occur at a
pressure p; > V 3 py.

The introduction of pressures and bearing clearances as they occur
practically in static bearings into the stability equation No. 16.18 sug-
gests that the compensating volume should be kept very small. In most cases,
the depth s of the annular channel must not be larger than the clearance h
itself. By such a limitation, the compensating space loses its original
purpose, i.e. improvement of the load capacity by uniform distribution of
the carrying gas entering through the nozzles.

With the testing equipment shown in Figs. 1 and 2, experiments re-
lating to the influence of the shape of the compensating spaces were per-
formed, using a bearing with the following principal dimensions: D,, =
120 mm, = 80 mm, Dyj = 50 mm, and which was equipped with four short
Lyllndrlcal nozzles at an angle \f 90° which were arranged in the fixed
bearing disc. The pressure of the carrying gas in front of the bearing was
varied between 2 and 20 atmospheres (absolute), whereas the limits of the
height of the clearance h were 0 and 100 }Lm. Some of the cases
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investigated are compiled on p. 151 . The experiments showed that the in-
stability of the bearing cannot be eliminated by the shape of the compensa-
ting channel. At equal operating conditions, (K es' P,» h), the only con-
clusion that could be reached was that the volum& of tﬁe compensating space
has a great influence on the frequency of the vibration. The larger the
volume V, was designed, the lower was the inherent frequency of the bearing
vibration.

C) Other parameters.

The influence of the pressure p, upon stability cannot be derived
directly from equation No. 16.18. But if the simplified limiting case accord-
ing to equation No. 16.19 is considered, it appears that, on account of the
increase of the load capacity factor C with decreasing pressure ratio
pl/pz, the influence of the pressure acts in two ways, both working in the
same direction. A greater stability is thus achieved by reducing the pres-
sure ratio pl/pz. It was found as a result of these experiments that the
vibration frequéncy increases with increasing pressure (at equal width of

the clearance).
Summarizing, it can be stated that the stability is improved or in-
creased, respectively, with increasing nozzle F , Vviscosity of the gas,

temperature*TB and gas constant R, and with decreasing height of the clearance.

16.3 Frequency of vibration.

For reasons which will be described later, the calculation of the
vibration frequency of the bearing and the components connected with it is
required. From the vibration equation No. 16.16 and the formulation of
solution At

Ah = e (16.19a)

the frequency equation can be obtained:
2
A+ aX + bA +c =0 . (16.19b)

The solutions of these cubic equations are:

7\1=u+v.———§5 (16.19¢)
. . C

Moo= - (MY s 2) BB (uly)

hm - (B 2) - BBy

where "u" and "v" are

uw = V"l* yqr + p? (16.19d)
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where, again, "q" and "p" mean:

3
_a’ ab + < (16.19e)
9=27 " % 2
b &
P=3 7 2 §
Thus the seneral solution of the vibration equation is:
SN ’ i3
ah <C, & (uev- ' C,e F& + Bu- v)]t [_( el Wit 16.20
[
The cyclic frequency of the vibration of the bearing is desired from the
imaginary part of the exponents of e (NB: "Hz" = Hertz or cycles)
o »
W = > (U-V) . (16.21)
or

\

V=2 o Buy) [

As could already be concluded from the experiments described before, this
general statement can be made: The larger the pressure p the smaller
the compensation volume, the bearing clearance and the VL%ratlng mass are,
the greater becomes the frequency.

Example:
For the purpose of comparison, the frequency of the thrust bearing
of the large testing device (ef. section on p. 137 and Figs. 3 - 11) are

recomputed.

Dimensions of the bearing: (NB. Dusenzahl = number of nozzles)

Tva = 0,133 n F, = 461,107 o
Taia = Og089 m FD = 6 42, 10 m? (16.21a)
T = 0,087 m n = 20 (Diisenzahl)
ﬁ;a = 8 882 m h = 44,107% m
- m m = 41,3 kg 8*/m
s = 0.7.10°° ’ .
Flow medium: air
Tg = 291 °K
R - 29 3 m/°K (16.21b)
% = 1,4
p = 1 85 10 kp s/m*
Calculated values:
X = 0 d = 1,676.10" q = 3,042.10" )16
A = 17,40 £ = 0,1006 p = 1,483.10° (167
{ = 2,242,100 a = 13k u = 3,245,10°
§ = 3 81.10°¢ € b = 4,72,10° vV = 4,570 10?
% = B8,775.10" ¢ = 8.175.10"
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Va= range of experiments.
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From the values given above, a calculated vibration frequency of ) = 108
cycles (Hertz) is obtained, whereas the frequency measured with the audio-

frequency generator and cathode-ray oscillograph was 123 cycles (Hz).

16.4 Elimination of self-excited vibrations.

As a rule, the self-induced vibrations occuring in bearings are
excited spontaneously without outside influence. The amplitude increases
there on account of the negative damping until the energy which is required
for a further growth of the amplitude is consumed by interior damping forces.
(cf. the Fig. on p. 141). An elimination of the vibration can be achieved
if the damping effect can be amplified in the bearing itself or if the vibra-
ting mass can be influenced suitably by external influences.

A) Damping by resonators.

The bearing illustrated on p. 143 (without damping elements) is a
system capable of vibrating which, on account of self-excitation at a cer-
tain frequency, performs undamped vibrations or even vibrations with nega-
tive damping and increasing amplitude. It is irrelevant for the study of
the attenuation of such a vibration, which follows, whether self-excited
or foreign-excited vibrations are involved. A
foreign excited mechanical vibration of a system

(principal system M - C in the drawing at right) P=R, snwt
can be attentuated, as it is known, also in case c
of resonance () = 000 Y by the attachment 3

of a second spring ¢ and a' second mass m, if the
inherent frequency (&)m of the system m - ¢ is M
equal to the inherent frequency of the principal %?

C
system M - C (cf., e.g. reference XXVI). 1In an

analogous way to the previously described dynamic
damping of mechanical vibration , an acoustical
element i.e., the Helmholtz resonator, is applied
for the elimination of vibrations in aerostatic bearings. Transferred to
the case of the bearing, the mass of air in the neck H of the resonator
corresponds to the mass m and the volume V_ of the resonator to the spring
constant C. 1In order to damp the principa% vibration, the inherent frequency
of the resonator must be equal, referring
to the mechanical analogy, to the frequency 4
of the self-excited vibration in this case. !
It is advantageous to branch the resonators I
|
!

off the compensating channel A in order to

achieve as good a damping effect as possi- f
ble in the bearing. For the auxiliary sys- ,Ff77
tem, the following equation can be formu- il E;}» e
lated if the interior damping forces are [, H ':;fie

disregarded:

My + cay = [ p(wnt), (16.22)

where y is the deflection of the air mass m
in the neck of the resonator, cp is the
spring constant of the resonator, f is the
cross section area of the neck of the

NN
SN

N
N\

S
=
NN

|
!
e
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resonator, and pl(t) the pressure in the compensating space which fluc-
tuates with time. Since the foreign excitation p,(t) for the auxiliary

system vibrates at the frequency ) y» the inherent frequency of the
auxiliary system must be, in order to achieve optimum vibration damping:
w = (L) . From equation No.16,22 it can be deduced that the inherent

frequency of the resonator is:

C
Cp = /Tn& . (16.23)

The spring constani of the resonator becomes:

Cp = Fd;P - (16.24)

At a displacement dy of the mass m in the
neck, the amount GR in the resonator is
increased by the magnitude

Ge=fydy = Vedy (16.25
If an adiabatic change of state of the gas is assumed in the resonator, where

the following applies:
iﬁ = 2@ ﬁ& (16.26)

P X‘~
a combination of equation No. 16.25 and No. 16,26 gives:
2
C =3ff P (16.27)
o W

If the mass in the neck of the resonator is

- fL7p

m (16.27a)
3RT
the inherent frequency of the resonator will be:
z.
e 14/ f a5 (16.28)

YR

2T 2y Ve e®

ﬁ\IZ&gRT is the sound velocity in the gas, and

where aS

1* 1 + IY/QCi- = the effective length of the neck of the resonator,
which is always higher than the actual length, since the gas must also be
accelerated in the regions of th mouth: d(f = a2 ”‘ﬁ'l is the diameter of
the neck duct,

Results of the experiments

1) The original design of the bearing discs of the testing apparatus
illustrated in Figs. 1 and 2 (Dy, = 120 mm, D ; = 50 mm, with an annular
compensating channel b = 3 mm, s = 1 mm) did not allow any measurements
of load capacity and amount of throughput on account of strong self-excited
vibrations with.a frequency of 200 to 600 cycles. By the installation of



-154- ’

of 4 equal, symmetrically arranged resonators in one of the bearing discs

(stationary disc in Fig. 2) with the following dimensions: d = 1 mm, .
1 =2mm, Vp = 13.2 cm’, tuned to an inherent frequency of Y., = 227
cycles (Hertz), all vibrations in all desired ranges of operation could
be completely eliminated. The sketch on the
right shows diagrammatically the bearing discs

used with feeding nozzles and installed \§\§§§Q§$\§§}Q§\Q\>§;\

resonator chambers. //, // D= 2#¢
/ P

2) According to the design of the large _ P L”‘ Tore
gas bearing testing apparatus (cf. Figs. 3 - L* Pids P
11 and the section on p. 137) the thrust hi \\Jkii \~bt5\ x
bearing of th€ dimensions Dj, = 266 mm, 30 N - \Q:
Do = 176 mm, Dyj = 110 mm, was equipped with | Na N\ AN
an annular compensation channel of the dimen- . N\ \<>Q\

sions Dy, = 178 mm, Dy; = .174 mm,. b = 2 mm Kaes | T2 NN\
S 20,7 8, ooLE g S ///)77J///

and several differently tuned
resonators. In this arrangement, two resona-
tors in pairs with equal dimensiors and inher-
ent frequencies were in diametrically opposite positions. On p.158 , the
workshop drawing of the fixed axial disc is illustrated without cover. The
installed resonators have the following dimensions and calculated inherent
frequencies: (NB. Anzahl = number; HZ = cycles (Hertz))

Anzahl D L /S (R f ¢ e* a

mn mm cm? mm mm* mm mm Hz

. 6 . 56 1,58 1 0,785 3,3 4,08 547

2 14 56 8,62 1,5 1,77 5,3 4,5 336

2 14 56 8,62 0,8 0,504 3,3 3,93 192

2 14 51 7,85 0,8 0,504 8,3 8,9% 133

1 26 2x51 S4,1 0,8 0,504 8,3 8,93 51
1 (60) (105) 351 1,5 1,77 8,3 9,5 56,2

(16.28a)

X¥) with resonator attached outside (cf. Fig. 10) and enlarged neck borehole
compared to the drawing on p. 158. The velocity of sound was uniformly assumed
t0 be ag = 312 m/sec.

The shaft which was, likewise, carried by aerostatic radial bearings
could follow, without friction, the vibrations induced by the thrust bearing,
since the clutch elements for rotating operation were omitted. The thrust
was produced by means of a pressurized air cushion acting upon the front side
of the free end of the shaft. The experiments were performed with air at an
inlet temperature T_ of about 293°K. 1In consideration of the annular compensa-
tion channel, as described above, and the presence of all the resonators, the
thrust bearing proved to be rather unstable. (The channel can ie clearly seen
in Fig. 8). Diagram 30 shows the individual stable and unstable regions as a




fanction of the pressure ratio p./p_ and the height of the bearing clearance
h. The axial vibration amplitudes 6f the 410 kp shaft were recorded in a few
cases only and amounted to 4 to 10 M m at the high frequencies and up to 50

m at the low frequencies. As can be seen in Diagram 30, the bearing has
two stable and one unstable main regions. It is interesting to note that the
unstable region of operation includes two special bands. The first band
appears at frequencies between 27 and 47 cycles. The bearing is stable in
this region. The second place is, strictly speaking, only a separating line
and is characterized by the fact that, upon passing this line, the vibration
of the bearing of 52 cycles fades out almost completely and then suddenly
increases to 63 cycles. It was not feasible to adjust to a vibration of a
frequency between these two values. If the inherent frequencies of the in-
stalled resonators are considered (cf. p. 154), an explanation can be given
for the behavior just described. The two last-named resonators withqep = 51
and 36.2 cycles attentuate the vibrations of the bearing at the respective
places more or less satisfactorily. Though, damping is limited here to a very
narrow frequency band.

For the next experiment, the neck ducts of all resonators were plugged
up in such a way that only the ring channel was responsible ftor the vibration
behavior of the bearing. Some measuring results with this arrangement are
included in Diagram 31, using the same way of representation. The inherent
frequency of the system was considerably higher in this case and was in the
range between » = 108 and 210 cycles. A comparison of the two series of
measurements shows (cf. Diagrams 30 and 31) that the vibration frequency is
considerably lowered by the installation of a great number of differently
tuned resonators and the lower boundary of stability was further reduced,

i.e. shifted into a region of smaller pressure ratios and clearance heights.
In this respect, operation without resonators proved to be more advantageous.
An arrangement with several resonators of different inherent frequency renders
the conditions poorer, since the resonators which are not in resonance have

no damping action and contribute only to the enlargement of the compensation
volum V, and thus to the reduction of the vibration frequencies. It may
also be assumed that the exciting forces are enhanced by the presence of not
accurately tuned resonators and that this overcompensates, in a way, the
favorable effect of the resonatiors.

When, after these experiments and results, those two resonators in
the bearing in which the inherent frequency was closest to that of the shaft
(the resonators with “* R = 135 cycles, cf. p. 154) were reopened and thus
became operating, no vibrations occurred any longer in the practical working
range of the bearing.

Conclusion.
S —————————————————

The preceeding experiment shows that it is not useful to install, at
the outset, a great number of resonators of different inherent frequency in
the bearing discs. Instead, it is advisable to determine, either by experi-
ment or calculation, the exact inherent frequency of the system and to design
and install the resonators in accordance with these results. There is, of
course, also the possibility to select such a resonator construction where at
least one of the imporcant magnitudes (e.g. VR) can be tuned to the operating
conditions. Tt could be seen in all experiments performed that high frequency
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vibrations could be damped much more easily than very low frequency vibra-
tions. It is, therefore, advantageous to design, first of all, the volume

of the compensating space as small as feasible (cf. also p. 81). Another
reason for tending towards high vibration frequencies is the fact that

large resonator chambers are required for low inherent frequencies, which
involves difficulties in the construction of the components of the bearing.
It is also shown in Experiment 1) that the elimination of vibrations at
higher frequencies is not limited to the frequency for which the resonator
was designe’ bui extends also to adjacent frequencies. It should also be
pointed out that the apertures of the resonators (cross section of the neck
duct) must be sufficiently large. If the opening is too small, the influence
of the viscosity of the gas is felt; this increases the acoustical resistance
of the resonator, decreases the inherent frequency and lowers the attenuating
effect and the transmission of force, respectively (cf. also reference XXVII).

B) Damping by interference.

The idea of generating several vibrations of different frequencies
in the same bearing in such a way that the vibrations are superimposed and
canceled, was followed up by an experiment with the components of the small
testing apparatus (Figs. 1 and 2). A disc with four feeding nozzles was
used for this purpose, each nozzle opening into a separate compensation space.
(cf. the drawing below).
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The compensation spaces were first designed in pairs of different
size, then all four were constructed at different depths s and arrangedin
various combinations. The experiments showed that no superimposition of
the vibrations, as desired, did occur and that the bearing remained unstable
in all cases. The frequency of the vibrations was always that of the largest
compensation space; thus the bearing vibrated at the lowest frequency. The
predominance of the lowest frequency does not allow any influence by higher
frequencies where the energy of vibration is lower. The generation of vibra-
tions of equal frequency, but with a phase shift of 1800, would be desirable
but cannot be realized in one and the same bearing.

C) Damping by friction.

The self-excited vibrations generated by the annular compensation
channel of the axial bearing in the large testing apparatus (Figs. 3 - 11,
or section, p. 137), with simultaneous admission of compressed air into
both radial bearings - allowing completely free motion of the shaft - dis-
appeared immediately after the gas feed was cut off to one of the two radial
bearings. These experiments were performed while, of course, the shaft did
not rotate. Thus the vibration was completely attenuated by friction in the
radial bearing as soon as the shaft got into contact with the bearing seat.

When the shaft was entirely free (i.e. pressurized gas was supplied
also to the radial bearings), the self-excited vibration of the thrust bear-
ing could be eliminated also by application of a medium heavy lead hammer to
the front surface of the shaft. Though, the separation between the friction
damping effect proper and the dynamic damping action is not feasible in an
accurate way.

In another case, connection of the swinging shaft to the fixed driv-
ing aggregate was already sufficient to create a satisfactory attenuation
and thus stability of the system. It must be mentioned, however, that the
connection was not rigid but allowed, for reasons of measuring technique,
shifts in axial directions; thus only the friction in the connecting sleeve
was decisive for the attenuation.

16.5 Vibrations of double-acting thrust bearings.

In some machines, the thrust bearing must take up equal or different
forces in both directions. The most simple method consists in using in such
cases a bilateral symmetrical bearing (cf. left drawing on the next page)
where the total axial free space of the shaft h. + h is determined by the
operating conditions of the machine. As soon as, however, the bearing gas
is admitted on both sides of the rotating axial disc, it depends on the
absolute axial free space to what extent the two sides of the bearing influ-
ence each other in the particular positions as far as load capacity 1is
concerned.
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The Drawings A and B above illustrate diagrammatically the bearing charac-
teristics Kges = £(h) at very small (=a) and very large (=b) free axial
space. With the small axial free space, there is an appreciable reduction

of Kges on account of the counter-thrust. With a large total free space,
however, the counteracting force affects the bearing side I only with the
portion Kip = FL.p2. In order to maintain the load capacity of the bilateral
bearing high, it is advantageous to select the total free space in such a way
that the points O1 and 02 (cf. Drawing b) just coincide. Without axial
thrust of the machine, the widths of the clearances h; and hII are equal or
different in their final adjustment depending on the parameters Pp1’ Ppry’
FDI and Fprp- In the case of the characteristic a, O is the point of equili-
brium, whereas in Drawing b the position of the shaft of the machine between
0, and 0, is not defined.

Diagram 32 shows the measuring results of the axial thrust ratios of
the bearing in a four-stage radial compressor which is illustrated on P. 166
in section and in Fig. 12 in top view. The section of the thrust bearing
illustrated on p. 167 shows the relative sizes of the components as well
as the direct opening of the 8 nozzles into the bearing clearance. The
rotor of the machine was, likewise, carried by aerostatic radial bearings.
In order to avoid damping from outside, the connection to the gear was
removed for the vibration experiment. With bilateral gas feed and without
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axial thrust, strong axial vibrations of the whole rotor around to O-posi-
tion occurred inspite of the absence of a compensation space in back of

the nozzles. Vibrations were even found when the free space was ®nlarged
to such an extent that, as shown in Drawing b, there was no longer any
mutual influence of the two sides of the bearing. The vibrations did not
disappear when one or the other feeding pressure Py was varied, i.e. at a
horizontal shift of the point O in the Drawing a. Diagram 32 illustrates
clearly how the rigidity of the bearing increases at the site hy = b

at ppr = Pprp with increasing pressure ratio p,/p,. This fact becamé also
evident by an increase of the vibration frequency, the vibration amplitude
becoming smaller with increasing rigidity. It may be concluded from the
considerations which follow that it is not a regular vibrating spring - mass
system with the "spring constant' (rigidity of the bearing) e = Ak es/Ob
and the mass of the rotor m ™ 16 which is the reason for this instability,
but that a self-excited vibration is involved which is caused by the feeding
system and the reversal of the thrust:

1) -Although the bearing was stable at unilateral gas feed and a
wide range of loads and widths of the clearance, the vibration is excited
spontanecusly without any external influence at bilateral gas admission
for Kges = 0.

2) The vibration does not fade out any more, i.e. the interior
attenuations which are due to the air cushion between the bearing discs are
compensated by the self-excitation.

3) A rough calculation of the vibrating frequency without con-
sideration of damping and self-excitation, from the rigidity values in
Diagram 32 gives, e.g. for Ppr = Pgrp = 6 x 10% kp/m2 a spring value of
ep, = 2.46 x 10 kp/m, from which tEe following formula can be derived:
(NB. Hz = Hertz = cycles)

N N . (16.28b)
V l“ V;Y\- ()/‘\r) }ilﬂ .

In contrast to this, a frequency of 36 cycles was measured. This discre-
pancy proves that we are not facing here a simple vibrating spring - mass

system.

Elimination of vibrations in double~acting bearings.

A) 1In order to remove the instability which appears at ngs = 0, 1t proved

to be effective to apply a relatively low axial thrust into one direction

in such a way that O'- (cf. Drawings a and b on p. 162) becomes the new equili-~
brium point. This could be done pneumatically, in a very simple way, in the
case of the bearing of the four-stage radial compressor which is shown as a
section on p. 167 , by throttling the exhaust air of the left thrust bearing
disc and the adjoining radial bearing slightly by means of a stopcock. In
this way, an increased pressure was generated in the collecting chamber, and
this pressure exerted a thrust on the front side of the radial bearing

journal pin.
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B) An increase of the total free space hy + h;; caused initially a reduc-
tion of the vibration frequency. The reason for this pnenomenon is that
the stroke between 0, and 0, (cf. Drawing b on p. 162) which must be
passed by the shaft as an inactive distance, was increased. But if a very
large total free bearing space is selected, stability can be achieved.

C) As has already been pointed out in Chapter 16.4 C, only a small exter-
nal damping of friction is necessary in order to eliminate the instability
of the bearing. In the case of the radial compressor illustrated on p. 166

all that was required was a connection of the shaft to the gear by means of
a jaw clutch coupling.
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Fig. 1. Total view of the small test .ng apparatus for aerostatic thrust bear-
e — . - . . . .
ings. The experiments were perform:d in non-rotating discs. Loading device
and measurement of the clearance are in the center of the picture. On the
right: Bearing gas compressor; on the left: Instruments for measuring of
the pressure distribution in the bearing clearance.

Fig. 2. Different bearing discs and accessories. Left front: Disc with
' pressure compensation space (annular channel). Center: Discs with u.and ?O,
respectively, feeding nozzles. Left back: Stationary disc in back-view with
the 1id removed and 4 resonator chambers.




Fig.
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Large testing apparatus for aerostatic and aerodynamic
bearings.

o
R
Individual components of the testing apparatus.

Front: Shaft with thrust bearing disc (weight approx. 400 kp).
Center: Casing of the testing apparatus.

Left: Movable and fixed radial bearing.

Right: Fixed radial bearing and all axial discs.




Fig. 5. View of the side of the
thrust bearing and the driving
elements. Left back: High pres-
sure Hg manometer for measuring
the pressure distribution in the
bearing clearance.

Fig. 7. Thrust bearing disc
with collet and nut on the
shaft. In the back, fixed
bearing disc with compressed
air duct and feeding elements.

Fig. 6. View of the side
of the thrust bearing.
Left back: Valves for the
admission of compressed
air. Left front: High
pressure difference
manometer for measuring
the amount of throughput.
Front center: connections
of the 12 measuring
pressure taps for determi-
nation of the pressure
distribution,
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Fig. 9. Stationary Bearing disc (back
side) with the 1id removed. The bore-

Fig. 8. Stationary bearing d%sc with holes of the nozzles, the measuring con-
annular channgl. Twenty feedlng nozzles nespiens and 10 resonstors, edusl @

and 12 measuring boreholes on different pairs, are clearly visible.

radii.

Fig. 10. Stationary bearing disc
with mounted 1id. Left: Connec-
tions of the pressure distribution
measurement. Right: Resonator,
arranged outside the disc for in-
creasing the volum ..

Fig. 11. Stationary and rotating
bearing disc after mutual contact at
13,000 r. p. m. On account of thermal
deformation, the damage occurred only
on the interior portion of the bearing
surface.
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